Skip to main content

EdgeMA: Model Adaptation System for Real-Time Video Analytics on Edge Devices

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14447))

Included in the following conference series:

  • 787 Accesses

Abstract

Real-time video analytics on edge devices for changing scenes remains a difficult task. As edge devices are usually resource-constrained, edge deep neural networks (DNNs) have fewer weights and shallower architectures than general DNNs. As a result, they only perform well in limited scenarios and are sensitive to data drift. In this paper, we introduce EdgeMA, a practical and efficient video analytics system designed to adapt models to shifts in real-world video streams over time, addressing the data drift problem. EdgeMA extracts the gray level co-occurrence matrix based statistical texture feature and uses the Random Forest classifier to detect the domain shift. Moreover, we have incorporated a method of model adaptation based on importance weighting, specifically designed to update models to cope with the label distribution shift. Through rigorous evaluation of EdgeMA on a real-world dataset, our results illustrate that EdgeMA significantly improves inference accuracy.

L. Wang and N. Zhang—These two authors have contributed to this work equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhardwaj, R., et al.: Ekya: continuous learning of video analytics models on edge compute servers. In: 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2022), pp. 119–135 (2022)

    Google Scholar 

  2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  3. Cutler, A., Cutler, D.R., Stevens, J.R.: Random forests. In: Ensemble Machine Learning, pp. 157–175. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4419-9326-7_5

  4. Fang, T., Lu, N., Niu, G., Sugiyama, M.: Rethinking importance weighting for deep learning under distribution shift. Adv. Neural. Inf. Process. Syst. 33, 11996–12007 (2020)

    Google Scholar 

  5. Ghosh, A.M., Grolinger, K.: Edge-cloud computing for internet of things data analytics: embedding intelligence in the edge with deep learning. IEEE Trans. Ind. Inf. 17(3), 2191–2200 (2020)

    Google Scholar 

  6. Gu, Y., Du, Z., Zhang, H., Zhang, X.: An efficient joint training framework for robust small-footprint keyword spotting. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12532, pp. 12–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_2

    Chapter  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  9. Hsieh, K., et al.: Focus: querying large video datasets with low latency and low cost. In: 13th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 2018), pp. 269–286 (2018)

    Google Scholar 

  10. Hua, H., Li, Y., Wang, T., Dong, N., Li, W., Cao, J.: Edge computing with artificial intelligence: a machine learning perspective. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  11. Ibrahim, M.R., Haworth, J., Cheng, T.: Weathernet: recognising weather and visual conditions from street-level images using deep residual learning. ISPRS Int. J. Geo Inf. 8(12), 549 (2019)

    Article  Google Scholar 

  12. Jia, Y., Zhang, X., Lan, L., Luo, Z.: Counterfactual causal adversarial networks for domain adaptation. In: Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, 22–26 November 2022, Proceedings, Part VI, pp. 698–709. Springer, Heidelberg (2023). https://doi.org/10.1007/978-981-99-1645-0_58

  13. Jiang, J., Ananthanarayanan, G., Bodik, P., Sen, S., Stoica, I.: Chameleon: scalable adaptation of video analytics. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, pp. 253–266 (2018)

    Google Scholar 

  14. Kang, D., Emmons, J., Abuzaid, F., Bailis, P., Zaharia, M.: Noscope: optimizing neural network queries over video at scale. Proc. VLDB Endow. 10(11) (2017)

    Google Scholar 

  15. Khani, M., et al.: RECL: responsive resource-efficient continuous learning for video analytics. In: 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2023), pp. 917–932 (2023)

    Google Scholar 

  16. Khani, M., Hamadanian, P., Nasr-Esfahany, A., Alizadeh, M.: Real-time video inference on edge devices via adaptive model streaming. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4572–4582 (2021)

    Google Scholar 

  17. Liao, X.C., Qiu, W.J., Wei, F.F., Chen, W.N.: Combining traffic assignment and traffic signal control for online traffic flow optimization. In: Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, 22–26 November 2022, Proceedings, Part VI, pp. 150–163. Springer, Heidelberg (2023). https://doi.org/10.1007/978-981-99-1645-0_13

  18. Lipton, Z., Wang, Y.X., Smola, A.: Detecting and correcting for label shift with black box predictors. In: International Conference on Machine Learning, pp. 3122–3130. PMLR (2018)

    Google Scholar 

  19. Liu, C., Qu, X., Wang, J., Xiao, J.: Fedet: a communication-efficient federated class-incremental learning framework based on enhanced transformer. arXiv preprint arXiv:2306.15347 (2023)

  20. Maji, K., Sharma, R., Verma, S., Goel, T.: RVFL classifier based ensemble deep learning for early diagnosis of alzheimer’s disease. In: Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, 22–26 November 2022, Proceedings, Part III, pp. 616–626. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30111-7_52

  21. Moreno-Torres, J.G., Raeder, T., Alaiz-Rodríguez, R., Chawla, N.V., Herrera, F.: A unifying view on dataset shift in classification. Pattern Recogn. 45(1), 521–530 (2012)

    Article  Google Scholar 

  22. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341–362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nigade, V., Wang, L., Bal, H.: Clownfish: edge and cloud symbiosis for video stream analytics. In: 2020 IEEE/ACM Symposium on Edge Computing (SEC), pp. 55–69. IEEE (2020)

    Google Scholar 

  24. Qin, M., Chen, L., Zhao, N., Chen, Y., Yu, F.R., Wei, G.: Power-constrained edge computing with maximum processing capacity for iot networks. IEEE Internet Things J. 6(3), 4330–4343 (2018)

    Article  Google Scholar 

  25. Qu, X., Wang, J., Xiao, J.: Quantization and knowledge distillation for efficient federated learning on edge devices. In: 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 967–972. IEEE (2020)

    Google Scholar 

  26. Rojas, R., et al.: Adaboost and the super bowl of classifiers a tutorial introduction to adaptive boosting. Freie University, Berlin, Technical Report (2009)

    Google Scholar 

  27. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)

    Article  Google Scholar 

  28. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  29. Wang, L., et al.: Shoggoth: towards efficient edge-cloud collaborative real-time video inference via adaptive online learning. arXiv preprint arXiv:2306.15333 (2023)

  30. Wen, L., et al.: UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. Comput. Vision Image Underst. 193, 102907 (2020)

    Article  Google Scholar 

  31. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie, R., Yu, F., Wang, J., Wang, Y., Zhang, L.: Multi-level domain adaptive learning for cross-domain detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0 (2019)

    Google Scholar 

  33. Zhang, H., Ananthanarayanan, G., Bodik, P., Philipose, M., Bahl, P., Freedman, M.J.: Live video analytics at scale with approximation and delay-tolerance. In: 14th USENIX Symposium on Networked Systems Design and Implementation (2017)

    Google Scholar 

  34. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Research and Development Program of Guangdong Province under Grant No.2021B0101400003, the National Natural Science Foundation of China under Grant No.62072196, and the Creative Research Group Project of NSFC No.61821003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L. et al. (2024). EdgeMA: Model Adaptation System for Real-Time Video Analytics on Edge Devices. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14447. Springer, Singapore. https://doi.org/10.1007/978-981-99-8079-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8079-6_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8078-9

  • Online ISBN: 978-981-99-8079-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics