Skip to main content

Progressive Temporal Transformer for Bird’s-Eye-View Camera Pose Estimation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14452))

Included in the following conference series:

  • 467 Accesses

Abstract

Visual relocalization is a crucial technique used in visual odometry and SLAM to predict the 6-DoF camera pose of a query image. Existing works mainly focus on ground view in indoor or outdoor scenes. However, camera relocalization on unmanned aerial vehicles is less focused. Also, frequent view changes and a large depth of view make it more challenging. In this work, we establish a Bird’s-Eye-View (BEV) dataset for camera relocalization, a large dataset contains four distinct scenes (roof, farmland, bare ground, and urban area) with such challenging problems as frequent view changing, repetitive or weak textures and large depths of fields. All images in the dataset are associated with a ground-truth camera pose. The BEV dataset contains 177242 images, a challenging large-scale dataset for camera relocalization. We also propose a Progressive Temporal transFormer (dubbed as PTFormer) as the baseline model. PTFormer is a sequence-based transformer with a designed progressive temporal aggregation module for temporal correlation exploitation and a parallel absolute and relative prediction head for implicitly modeling the temporal constraint. Thorough experiments are exhibited on both the BEV dataset and widely used handheld datasets of 7Scenes and Cambridge Landmarks to prove the robustness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balntas, V., Li, S., Prisacariu, V.: RelocNet: continuous metric learning relocalisation using neural nets. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 782–799. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_46

    Chapter  Google Scholar 

  2. Brachmann, E., et al.: DSAC-differentiable RANSAC for camera localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6684–6692 (2017)

    Google Scholar 

  3. Brachmann, E., Michel, F., Krull, A., Yang, M.Y., Gumhold, S., et al.: Uncertainty-driven 6d pose estimation of objects and scenes from a single RGB image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3364–3372 (2016)

    Google Scholar 

  4. Brachmann, E., Rother, C.: Learning less is more-6d camera localization via 3d surface regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4654–4662 (2018)

    Google Scholar 

  5. Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J.: Geometry-aware learning of maps for camera localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2616–2625 (2018)

    Google Scholar 

  6. Cao, S., Snavely, N.: Minimal scene descriptions from structure from motion models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 461–468 (2014)

    Google Scholar 

  7. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  8. Clark, R., Wang, S., Markham, A., Trigoni, N., Wen, H.: VidLoc: a deep spatio-temporal model for 6-DoF video-clip relocalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6856–6864 (2017)

    Google Scholar 

  9. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)

    Google Scholar 

  10. Dusmanu, M., et al.: D2- Net: a trainable CNN for joint detection and description of local features. In: CVPR 2019-IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  11. En, S., Lechervy, A., Jurie, F.: RPNet: an end-to-end network for relative camera pose estimation. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 738–745. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_46

    Chapter  Google Scholar 

  12. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  13. Gao, S., Zhou, C., Ma, C., Wang, X., Yuan, J.: AiATrack: attention in attention for transformer visual tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 146–164. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_9

    Chapter  Google Scholar 

  14. Horn, B.K.: Closed-form solution of absolute orientation using unit quaternions. Josa a 4(4), 629–642 (1987)

    Article  Google Scholar 

  15. Kendall, A., Cipolla, R.: Modelling uncertainty in deep learning for camera relocalization. In: 2016 IEEE International Conference on Robotics and Automation, pp. 4762–4769. IEEE (2016)

    Google Scholar 

  16. Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5974–5983 (2017)

    Google Scholar 

  17. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DoF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)

    Google Scholar 

  18. Laskar, Z., Melekhov, I., Kalia, S., Kannala, J.: Camera relocalization by computing pairwise relative poses using convolutional neural network. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 929–938 (2017)

    Google Scholar 

  19. Li, X., Ling, H.: GTCaR: graph transformer for camera re-localization. In: Avidan, S., Brostow, G., Cisé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13670, pp. 229–246. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20080-9_14

    Chapter  Google Scholar 

  20. Li, Y., Snavely, N., Huttenlocher, D.P., Fua, P.: Worldwide pose estimation using 3D point clouds. In: Zamir, A.R.R., Hakeem, A., Van Van Gool, L., Shah, M., Szeliski, R. (eds.) Large-Scale Visual Geo-Localization. ACVPR, pp. 147–163. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25781-5_8

    Chapter  Google Scholar 

  21. Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 year, 1000 km: the oxford robotcar dataset. Int. J. Robot. Res. 36(1), 3–15 (2017)

    Article  Google Scholar 

  22. Melekhov, I., Ylioinas, J., Kannala, J., Rahtu, E.: Image-based localization using hourglass networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 879–886 (2017)

    Google Scholar 

  23. Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust hierarchical localization at large scale. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12716–12725 (2019)

    Google Scholar 

  24. Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective prioritized matching for large-scale image-based localization. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1744–1756 (2016)

    Article  Google Scholar 

  25. Schleiss, M., Rouatbi, F., Cremers, D.: Vpair-aerial visual place recognition and localization in large-scale outdoor environments. arXiv preprint arXiv:2205.11567 (2022)

  26. Shavit, Y., Ferens, R., Keller, Y.: Learning multi-scene absolute pose regression with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2733–2742 (2021)

    Google Scholar 

  27. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2930–2937 (2013)

    Google Scholar 

  28. Stenborg, E., Sattler, T., Hammarstrand, L.: Using image sequences for long-term visual localization. In: 2020 International Conference on 3d Vision, pp. 938–948. IEEE (2020)

    Google Scholar 

  29. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8922–8931 (2021)

    Google Scholar 

  30. Svärm, L., Enqvist, O., Kahl, F., Oskarsson, M.: City-scale localization for cameras with known vertical direction. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1455–1461 (2016)

    Article  Google Scholar 

  31. Taira, H., et al.: InLoc: indoor visual localization with dense matching and view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7199–7209 (2018)

    Google Scholar 

  32. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  33. Vallone, A., Warburg, F., Hansen, H., Hauberg, S., Civera, J.: Danish airs and grounds: a dataset for aerial-to-street-level place recognition and localization. IEEE Robot. Autom. Lett. 7(4), 9207–9214 (2022)

    Article  Google Scholar 

  34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  35. Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D.: Image-based localization using LSTMs for structured feature correlation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 627–637 (2017)

    Google Scholar 

  36. Wang, B., Chen, C., Lu, C.X., Zhao, P., Trigoni, N., Markham, A.: AtLoc: attention guided camera localization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10393–10401 (2020)

    Google Scholar 

  37. Wu, J., Ma, L., Hu, X.: Delving deeper into convolutional neural networks for camera relocalization. In: 2017 IEEE International Conference on Robotics and Automation, pp. 5644–5651. IEEE (2017)

    Google Scholar 

  38. Xue, F., Wang, X., Yan, Z., Wang, Q., Wang, J., Zha, H.: Local supports global: deep camera relocalization with sequence enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2841–2850 (2019)

    Google Scholar 

  39. Xue, F., Wu, X., Cai, S., Wang, J.: Learning multi-view camera relocalization with graph neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11372–11381. IEEE (2020)

    Google Scholar 

  40. Zhou, K., Chen, C., Wang, B., Saputra, M.R.U., Trigoni, N., Markham, A.: VMLoc: variational fusion for learning-based multimodal camera localization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6165–6173 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoyuan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Cai, J., Huang, R., Liu, X., Chai, Z. (2024). Progressive Temporal Transformer for Bird’s-Eye-View Camera Pose Estimation. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14452. Springer, Singapore. https://doi.org/10.1007/978-981-99-8076-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8076-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8075-8

  • Online ISBN: 978-981-99-8076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics