Skip to main content

Advances in Tools and Techniques to Quantify Melatonin in Plants and Foodstuff

  • Chapter
  • First Online:
Melatonin in Plants: Role in Plant Growth, Development, and Stress Response

Part of the book series: Plant Life and Environment Dynamics ((PLED))

  • 80 Accesses

Abstract

As an ancient pleiotropic molecule, melatonin (N-acetyl-5-methoxytryptamine) regulates numerous cellular, physiological, biochemical, and molecular processes in plants. Although the existence of melatonin has been well documented over 27 years in photosynthetic organisms, research into the phytomelatonin is still limited due to lower endogenous concentrations in complex plant metrics and lack of rapid efficient quantification techniques. Therefore, scientists worldwide showed extensive efforts to develop sensitive detection tools and techniques for future innovative research and human well-being. Among the various analytical methods selective high performance liquid chromatography mass spectrophotometry (HPLC-MS) is largely used for high selectivity, accuracy, robustness, and low limit of detection. However, in recent years micro-fabrication and nanomaterial-mediated decoration of novel electrochemical and optical detection tools draw extra attention in addition to capillary electrophoresis, fluorimetry or immunological assay due to their wider biocompatibility, sensitivity, range limit, and precision detection. In this chapter, we summarize recent technological advances in melatonin quantification in plant samples and discuss the challenges of developed techniques in phytomelatonin research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afreen F, Zobayed SM, Kozai T (2006) Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J Pineal Res 41(2):108–115

    Article  PubMed  Google Scholar 

  • Afshar EA, Taher MA, Karimi F, Karaman C, Moradi O (2022) Ultrasensitive and highly selective “turn-on” fluorescent sensor for the detection and measurement of melatonin in juice samples. Chemosphere 295:133869

    Article  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2013) Growth conditions influence the melatonin content of tomato plants. Food Chem 138(2–3):1212–1214

    Article  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015a) Chapter 11. Phytomelatonin: searching for plants with high levels for use as a natural nutraceutical. In: Atta ur R (ed) Studies in natural products chemistry, vol 46. Elsevier, Amsterdam, pp 519–545. https://doi.org/10.1016/B978-0-444-63462-7.00011-7

    Chapter  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015b) Functions of melatonin in plants: a review. J Pineal Res 59(2):133–150

    Article  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018) Phytomelatonin, natural melatonin from plants as a novel dietary supplement: sources, activities and world market. J Funct Foods 48:37–42

    Article  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24(1):38–48

    Article  PubMed  Google Scholar 

  • Bahcesular B, Yildirim ED, Karaçocuk M, Kulak M, Karaman S (2020) Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress. Ind Crop Prod 146:112165

    Article  Google Scholar 

  • Bai Y, Wei Y, Yin H, Hu W, Cheng X, Guo J, Dong Y, Zheng L, Xie H, Zeng H (2022) PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava. J Pineal Res 73(1):e12804

    Article  PubMed  Google Scholar 

  • Bonomini F, Borsani E, Favero G, Rodella LF, Rezzani R (2018) Dietary melatonin supplementation could be a promising preventing/therapeutic approach for a variety of liver diseases. Nutrients 10(9):1135

    Article  PubMed  PubMed Central  Google Scholar 

  • Canizo BV, Quintas PY, Wuilloud RG, Silva MF, Gomez FJ (2022) Fluorescent behavior of melatonin and related indoleamines in natural deep eutectic solvents. J Mol Liq 363:119902

    Article  Google Scholar 

  • Cao J, Murch SJ, O’Brien R, Saxena PK (2006) Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography–tandem mass spectrometry. J Chromatogr A 1134(1–2):333–337

    Article  PubMed  Google Scholar 

  • Castagnola E, Woeppel K, Golabchi A, McGuier M, Chodapaneedi N, Metro J, Taylor IM, Cui XT (2020) Electrochemical detection of exogenously administered melatonin in the brain. Analyst 145(7):2612–2620

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerezo AB, Leal Á, Álvarez-Fernández MA, Hornedo-Ortega R, Troncoso AM, García-Parrilla MC (2016) Quality control and determination of melatonin in food supplements. J Food Compos Anal 45:80–86

    Article  Google Scholar 

  • Chen Z-J, Fu H-J, Luo L, Sun Y-M, Yang J-Y, Zeng D-P, Shen Y-D, Xu Z-L (2017) Development of competitive indirect ELISAs with a flexible working range for the simple quantification of melatonin in medicinal foods. Anal Methods 9(10):1617–1626

    Article  Google Scholar 

  • Chen Z, Zhou K, Ha W, Chen P, Fu H, Shen Y, Sun Y, Xu Z (2019) Development of a low-cost, simple, fast and quantitative lateral-flow immunochromatographic assay (ICA) strip for melatonin in health foods. Food Agric Immunol 30(1):497–509

    Article  Google Scholar 

  • Chrustek A, Olszewska-Słonina D (2021) Melatonin as a powerful antioxidant. Acta Pharm 71(3):335–354

    Article  PubMed  Google Scholar 

  • Coskun O (2016) Separation techniques: chromatography. North Clin Istanbul 3(2):156

    Google Scholar 

  • Duan D, Ding Y, Li L, Ma G (2020) Rapid quantitative detection of melatonin by electrochemical sensor based on carbon nanofibers embedded with FeCo alloy nanoparticles. J Electroanal Chem 873:114422

    Article  Google Scholar 

  • Dubbels R, Reiter R, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara H, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18(1):28–31

    Article  PubMed  Google Scholar 

  • Feng X, Wang M, Zhao Y, Han P, Dai Y (2014) Melatonin from different fruit sources, functional roles, and analytical methods. Trends Food Sci Technol 37(1):21–31

    Article  Google Scholar 

  • Garcia-Parrilla MC, Cantos E, Troncoso AM (2009) Analysis of melatonin in foods. J Food Compos Anal 22(3):177–183

    Article  Google Scholar 

  • Gomez FJ, Hernández IG, Cerutti S, Silva MF (2015) Solid phase extraction/cyclodextrin-modified micellar electrokinetic chromatography for the analysis of melatonin and related indole compounds in plants. Microchem J 123:22–27

    Article  Google Scholar 

  • Gonçalves AC, Nunes AR, Alves G, Silva LR (2021) Serotonin and melatonin: plant sources, analytical methods, and human health benefits. Rev Bras 31:162–175

    Google Scholar 

  • González-Gómez D, Lozano M, Fernández-León MF, Ayuso M, Bernalte MJ, Rodríguez AB (2009) Detection and quantification of melatonin and serotonin in eight sweet cherry cultivars (Prunus avium L.). Eur Food Res Technol 229:223–229

    Article  Google Scholar 

  • Grao-Cruces E, Calvo JR, Maldonado-Aibar MD, Millan-Linares MC, Montserrat-de la Paz S (2023) Mediterranean diet and melatonin: a systematic review. Antioxidants 12(2):264

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35(3):627–634

    PubMed  Google Scholar 

  • Hensley AL, Colley AR, Ross AE (2018) Real-time detection of melatonin using fast-scan cyclic voltammetry. Anal Chem 90(14):8642–8650

    Article  PubMed  Google Scholar 

  • Hosseini M, Hashemian E, Salehnia F, Ganjali MR (2022) Turn-on electrochemiluminescence sensing of melatonin based on graphitic carbon nitride nanosheets. J Electroanal Chem 921:116593

    Article  Google Scholar 

  • Hosseinian FS, Li W, Beta T (2008) Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem 109(4):916–924

    Article  PubMed  Google Scholar 

  • Huang X, Mazza G (2011a) Application of LC and LC-MS to the analysis of melatonin and serotonin in edible plants. Crit Rev Food Sci Nutr 51(4):269–284

    Article  PubMed  Google Scholar 

  • Huang X, Mazza G (2011b) Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J Chromatogr A 1218(25):3890–3899

    Article  PubMed  Google Scholar 

  • Johns NP, Johns J, Porasuphatana S, Plaimee P, Sae-Teaw M (2013) Dietary intake of melatonin from tropical fruit altered urinary excretion of 6-sulfatoxymelatonin in healthy volunteers. J Agric Food Chem 61(4):913–919

    Article  PubMed  Google Scholar 

  • Kanwar MK, Xie D, Yang C, Ahammed GJ, Qi Z, Hasan MK, Reiter RJ, Yu J-Q, Zhou J (2020) Melatonin promotes metabolism of bisphenol a by enhancing glutathione-dependent detoxification in Solanum lycopersicum L. J Hazard Mater 388:121727

    Article  PubMed  Google Scholar 

  • Kennaway DJ (2020) Measuring melatonin by immunoassay. J Pineal Res 69(1):e12657

    Article  PubMed  Google Scholar 

  • Khan ZA, Hong PJ-S, Lee CH, Hong Y (2021) Recent advances in electrochemical and optical sensors for detecting tryptophan and melatonin. Int J Nanomedicine 16:6861

    Article  PubMed  PubMed Central  Google Scholar 

  • Korkmaz A, Değer Ö, Cuci Y (2014) Profiling the melatonin content in organs of the pepper plant during different growth stages. Sci Hortic 172:242–247. https://doi.org/10.1016/j.scienta.2014.04.018

    Article  Google Scholar 

  • Kukula-Koch W, Szwajgier D, Gaweł-Bęben K, Strzępek-Gomółka M, Głowniak K, Meissner HO (2021) Is Phytomelatonin complex better than synthetic melatonin? The assessment of the antiradical and anti-inflammatory properties. Molecules 26(19):6087

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Goyal RN (2016) Nanopalladium grained polymer nanocomposite based sensor for the sensitive determination of melatonin. Electrochim Acta 211:18–26

    Article  Google Scholar 

  • Lete C, López-Iglesias D, García-Guzmán JJ, Leau S-A, Stanciu AE, Marin M, Palacios-Santander JM, Lupu S, Cubillana-Aguilera L (2022) A sensitive electrochemical sensor based on sonogel-carbon material enriched with gold nanoparticles for melatonin determination. Sensors 22(1):120

    Article  Google Scholar 

  • Liu M, Wang Z-Y, Zhang C-Y (2016) Recent advance in chemiluminescence assay and its biochemical applications. Chin J Anal Chem 44(12):1934–1941. https://doi.org/10.1016/S1872-2040(16)60981-7

    Article  Google Scholar 

  • Lu J, Lau C, Lee MK, Kai M (2002) Simple and convenient chemiluminescence method for the determination of melatonin. Anal Chim Acta 455(2):193–198

    Article  Google Scholar 

  • Mercolini L, Mandrioli R, Raggi MA (2012) Content of melatonin and other antioxidants in grape-related foodstuffs: measurement using a MEPS-HPLC-F method. J Pineal Res 53(1):21–28

    Article  PubMed  Google Scholar 

  • Moser D, Hussain S, Rainer M, Jakschitz T, Bonn GK (2022) A validated method for the rapid quantification of melatonin in over-the-counter hypnotics by the atmospheric pressure solid analysis probe (ASAP). Anal Methods 14(16):1603–1610

    Article  PubMed  Google Scholar 

  • Oladi E, Mohamadi M, Shamspur T, Mostafavi A (2014) Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid–liquid extraction. Spectrochim Acta A Mol Biomol Spectrosc 132:326–329

    Article  PubMed  Google Scholar 

  • Peña-Delgado V, Carvajal-Serna M, Fondevila M, Martín-Cabrejas MA, Aguilera Y, Álvarez-Rivera G, Abecia JA, Casao A, Pérez-Pe R (2023) Improvement of the seminal characteristics in rams using agri-food by-products rich in phytomelatonin. Animals 13(5):905

    Article  PubMed  PubMed Central  Google Scholar 

  • Przybylska A, Gackowski M, Koba M (2021) Application of capillary electrophoresis to the analysis of bioactive compounds in herbal raw materials. Molecules 26(8):2135

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ, Tan D-X, Zhou Z, Cruz MHC, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20(4):7396–7437

    Article  PubMed  PubMed Central  Google Scholar 

  • Rzepka-Migut B, Paprocka J (2020) Melatonin-measurement methods and the factors modifying the results. A systematic review of the literature. Int J Environ Res Public Health 17(6):1916

    Article  PubMed  PubMed Central  Google Scholar 

  • Sariahmetoglu M, Wheatley RA, Çakýcý Ý, Kanzýk Ý, Townshend A (2003) Evaluation of the antioxidant effect of melatonin by flow injection analysis-luminol chemiluminescence. Pharmacol Res 48(4):361–367. https://doi.org/10.1016/S1043-6618(03)00177-4

    Article  PubMed  Google Scholar 

  • Scozzari A (2008) Electrochemical sensing methods: a brief review. In: Algal toxins: nature, occurrence, effect and detection. Springer Science + Business Media B.V., Dordrecht, pp 335–351

    Chapter  Google Scholar 

  • Suarez-Fernandez M, Marhuenda-Egea FC, Lopez-Moya F, Arnao MB, Cabrera-Escribano F, Nueda MJ, Gunsé B, Lopez-Llorca LV (2020) Chitosan induces plant hormones and defenses in tomato root exudates. Front Plant Sci 11:572087

    Article  PubMed  PubMed Central  Google Scholar 

  • Vafadar F, Amooaghaie R, Ehsanzadeh P, Ghanati F, Sajedi RH (2020) Crosstalk between melatonin and Ca2+/CaM evokes systemic salt tolerance in Dracocephalum kotschyi. J Plant Physiol 252:153237

    Article  PubMed  Google Scholar 

  • Van Tassel DL, O'Neill SD (2001) Putative regulatory molecules in plants: evaluating melatonin. J Pineal Res 31(1):1–7

    Article  PubMed  Google Scholar 

  • Vijayakumar S, Venkatesan S, Lin M-C, Vediappen P (2023) Highly sensitive and selective detection of melatonin in biofluids by Antipyrine based fluorophore. J Fluoresc 33(1):383–392

    Article  PubMed  Google Scholar 

  • Voeten RL, Ventouri IK, Haselberg R, Somsen GW (2018) Capillary electrophoresis: trends and recent advances. Anal Chem 90(3):1464–1481

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei SL, Zhao LX, Cheng XL, Lin JM (2007) Determination of melatonin in rat pineal gland and drug with flow-injection chemiluminescence. Chin J Chem 25(4):535–541

    Article  Google Scholar 

  • Zeinali H, Bagheri H, Monsef-Khoshhesab Z, Khoshsafar H, Hajian A (2017) Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@ rGO nanocomposite. Mater Sci Eng C 71:386–394

    Article  Google Scholar 

  • Zhang X-Y, Zhang Y, Yu Z, Liu Z-f, Wei B-B, Feng X-S (2022) Melatonin in different food samples: recent update on distribution, bioactivities, pretreatment and analysis techniques. Food Res Int 163:112272

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology (NST) of Bangladesh and Sylhet Agricultural university research System (SAURES), Sylhet-3100, Bangladesh.

Author Contributions

M.K.H and J.S planned and wrote initial draft of the manuscript. M.K.H., G.JA. and J.Z revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Kamrul Hasan or Jie Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan, M.K., Shopan, J., Ahammed, G.J., Zhou, J. (2024). Advances in Tools and Techniques to Quantify Melatonin in Plants and Foodstuff. In: Sharma, A., Ahammed, G.J. (eds) Melatonin in Plants: Role in Plant Growth, Development, and Stress Response. Plant Life and Environment Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-99-8051-2_13

Download citation

Publish with us

Policies and ethics