Skip to main content

Theory Models of Electromagnetic Metamaterials and Metasurfaces

  • Chapter
  • First Online:
Electromagnetic Metamaterials and Metasurfaces: From Theory To Applications
  • 323 Accesses

Abstract

Metamaterials are artificially engineered composite materials that exhibit special properties that are not found in nature and not observed in the constituent materials, including negative refraction, backward propagation, etc. With the subwavelength meta-atoms, the metamaterials can be characterized by the equivalent bulk parameters including permittivity and permeability. Metasurfaces can be considered as the two-dimensional (2D) equivalent of bulk metamaterials. The effective permittivity, permeability and refractive index are of less interest in metasurfaces. In contrast, of significant importance are the surface or interface reflection and transmission resulting from the tailored surface impedance, including their amplitude, phase, and polarization states. With the abrupt phase discontinuous, the anomalous reflection and transmission are achieved. In this chapter, the electromagnetic properties for metamaterials with double negative bulk parameters are first demonstrated. Then the generalized Snell’s law for metasurfaces is elaborated. Furthermore, the digital coding method for the metamaterials/metasurfaces are discussed. Finally, the group theory is introduced to analyse the symmetry of the metamaterials/metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.V. Eleftheriades, K.G. Balmain, Negative-Refraction Metamaterials Fundamental Principles and Applications (IEEE Press, New Jersey, 2005)

    Book  Google Scholar 

  2. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications The Engineering Approach (Wiley, New Jersey, 2006)

    Google Scholar 

  3. R. Marques, F. Martin, M. Sorolla, Metamaterials with Negative Parameters Theory, Design and Microwave Applications (Wiley, New Jersey, 2008)

    Google Scholar 

  4. L. Solymar, E. Shamonina, Waves in Metamaterials (Oxford University, New York, 2009)

    Book  Google Scholar 

  5. T.J. Cui, R. Liu, D.R. Smith, Metamaterials Theory, Design and Applications (Springer, New York, 2009)

    Google Scholar 

  6. T.J. Cui, W.X. Tang, X.M. Yang, Z.L. Mei, W.X. Jiang, Metamaterials Beyond Crystals, Noncrystals, and Quasicrystals (CRC Press, New York, 2016)

    Book  Google Scholar 

  7. H. Lamb, On group-velocity. Proc. London Math. Soc, Ser. 2, 1, 473–479 (1904)

    Google Scholar 

  8. A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, London, 1904)

    Google Scholar 

  9. L.I. Mandelshtam, Group velocity in crystalline arrays. Zh. Eksp. Teor. Fiz. 15, 475–478 (1945). (in Russian)

    Google Scholar 

  10. D.V. Sivukhin, The energy of electromagnetic fields in dispersive media. Opt. Spektrosk. 3, 308–312 (1957). (in Russian)

    Google Scholar 

  11. V.E. Pafomov, On transition radiation and the Vavilov-Cherenkov radiation. Zh. Eksp. Teor. Fiz. 36, 1853–1858 (1959). (in Russian)

    Google Scholar 

  12. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Usp. Fiz. Nauk. 92, 517–526 (1967). (in Russian)

    Article  Google Scholar 

  13. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter. 10, 4785–4809 (1998)

    Article  Google Scholar 

  14. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  Google Scholar 

  15. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  Google Scholar 

  16. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MathSciNet  Google Scholar 

  17. U. Leonhardt, Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  MathSciNet  Google Scholar 

  18. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–979 (2006)

    Article  Google Scholar 

  19. R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui, D.R. Smith, Broadband ground-plane cloak. Science 323, 366–369 (2009)

    Article  Google Scholar 

  20. L. Zhang, Y. Shi, C.H. Liang, Achieving illusion and invisibility of inhomogeneous cylinders and spheres. J. Optics 18, 085101 (2016)

    Article  Google Scholar 

  21. L. Zhang, Y. Shi, C.H. Liang, Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres. Opt. Express 24, 23333–23352 (2016)

    Article  Google Scholar 

  22. Y. Shi, W. Tang, L. Li, C.H. Liang, Three-dimensional complementary invisibility cloak with arbitrary shapes. IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015)

    Article  Google Scholar 

  23. Y. Shi, L. Zhang, W. Tang, L. Li, C.H. Liang, Design of a minimized complementary illusion cloak with arbitrary position. Int. J. Antennas Propag., pp. 932495 (2015)

    Google Scholar 

  24. Y. Shi, W. Tang, C.H. Liang, A minimized invisibility complementary cloak with a composite shape. IEEE Antennas Wirel. Propag. Lett. 13, 1800–1803 (2014)

    Article  Google Scholar 

  25. L. Zhang, Y. Shi, Bifunctional arbitrarily-shaped cloak for thermal and electric manipulations. Opt. Mater. Express 8, 2600–2613 (2018)

    Article  Google Scholar 

  26. Y. Shi, L. Zhang, Cloaking design for arbitrarily shape objects based on characteristic mode method. Opt. Express 25, 32263–32279 (2017)

    Article  Google Scholar 

  27. L. Li, X.J. Dang, B. Li, C.H. Liang, Analysis and design of waveguide slot antenna array integrated with electromagnetic band-gap structures. IEEE Antennas Wirel. Propag. Lett. 5, 111–115 (2006)

    Article  Google Scholar 

  28. L. Li, Z. Jia, F.F. Huo, W.Q. Han, A novel compact multiband antenna employing dual-band CRLH-TL for smart mobile phone application. IEEE Antennas Wirel. Propag. Lett. 12, 1688–1691 (2013)

    Article  Google Scholar 

  29. L. Li, F.F. Huo, Z. Jia, W.Q. Han, Dual zeroth-order resonance antennas with low mutual coupling for MIMO communications. IEEE Antennas Wirel. Propag. Lett. 12, 1692–1695 (2013)

    Article  Google Scholar 

  30. J. Xing, L. Li, L. Zhang, H. Sun, Y. Shi, Compact multiband antenna with CRLH-TL ZOR for wireless USB dongle applications. Microw. Opt. Technol. Lett. 56, 1133–1138 (2014)

    Article  Google Scholar 

  31. Y. Shi, L. Zhang, C.H. Liang, Dual zeroth-order resonant USB dongle antennas for 4G MIMO wireless communications. Int. J. Antennas Propag. Article ID 816051 (2015)

    Google Scholar 

  32. G.H. Li, H.Q. Zhai, L. Li, C.H. Liang, R.D. Yu, S. Liu, AMC-loaded wideband base station antenna for indoor access point in MIMO system. IEEE Trans. Antennas Propag. 63(2), 525–532 (2015)

    Article  Google Scholar 

  33. Y. Shi, K. Li, J. Wang, L. Li, C.H. Liang, An etched planar metasurface half maxwell fish-eye lens antenna. IEEE Trans. Antennas Propag. 63, 3742–3747 (2015)

    Article  MathSciNet  Google Scholar 

  34. Y. Shi, Y.C. Li, Design of broadband leaky-wave antenna based on permeability-negative transmission line. Microw. Opt. Technol. Lett. 60, 699–704 (2018)

    Article  Google Scholar 

  35. M. Paquay, J.C. Iriarte, I. Ederra, Thin AMC structure for radar cross-section reduction. IEEE Trans. Antennas Propag. 55, 3630–3638 (2007)

    Article  Google Scholar 

  36. W. Chen, C.A. Balanis, C.R. Birtcher, Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Trans. Antennas Propag. 63, 2636–2645 (2015)

    Article  MathSciNet  Google Scholar 

  37. Y. Shi, Z.K. Meng, W.Y. Wei, W. Zheng, L. Li, Characteristic mode cancellation method and its application for antenna RCS reduction. IEEE Antennas Wireless Propag. Lett. 18, 1784–1788 (2019)

    Article  Google Scholar 

  38. H. Zhang, Y. Lu, J. Su, Z. Li, J. Liu, Y. Yang, Coding diffusion metasurfaces for ultra-wideband RCS reduction. Electron. Lett. 53, 187–189 (2017)

    Article  Google Scholar 

  39. J.F. Han, X.Y. Cao, J. Gao, J. Wei, Y. Zhao, S. Li, Z. Zhang, Broadband radar cross section reduction using dual-circular polarization diffusion metasurface. IEEE Antennas Wirel. Propag. Lett. 17, 969–973 (2018)

    Article  Google Scholar 

  40. R. Zaker, A. Sadeghzadeh, A low-profile design of polarization rotation reflective surface for wideband RCS reduction. IEEE Antennas Wirel. Propag. Lett. 18, 1794–1798 (2019)

    Article  Google Scholar 

  41. Y. Lu, J.X. Su, J.B. Liu, Q.X. Guo, H.C. Yin, Z.R. Li, J.M. Song, Ultrawideband monostatic and bistatic RCS reductions for both copolarization and cross polarization based on polarization conversion and destructive interference. IEEE Trans. Antennas Propag. 67, 4936–4941 (2019)

    Article  Google Scholar 

  42. Y. Shi, X.F. Zhang, Z.K. Meng, L. Li, Design of low-RCS antenna using antenna array. IEEE Trans. Antennas Propag. 67, 6484–6493 (2019)

    Article  Google Scholar 

  43. Z.K. Meng, Y. Shi, W.Y. Wei, X.F. Zhang, Multifunctional scattering antenna array design for orbital angular momentum vortex waves and RCS reduction. IEEE Access 8, 109289–109296 (2020)

    Article  Google Scholar 

  44. Y. Shi, H.X. Meng, H.J. Wang, Polarization conversion metasurface design based on characteristic mode rotation and its application into wideband and miniature antenna with low radar cross section. Opt. Express 29(5), 6794–6809 (2021)

    Article  Google Scholar 

  45. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  Google Scholar 

  46. C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54(2), 10–35 (2012)

    Article  Google Scholar 

  47. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, D.P. Tsai, High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012)

    Article  Google Scholar 

  48. A. Pors, M.G. Nielsen, R.L. Eriksen, S.I. Bozhevolnyi, Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013)

    Article  Google Scholar 

  49. A. Pors, S.I. Bozhevolnyi, Plasmonic metasurfaces for efficient phase control in reflection. Opt. Express 21, 27438–27451 (2013)

    Article  Google Scholar 

  50. M. Farmahini-Farahani, H. Mosallaei, Birefringent reflectarray metasurface for beam engineering in infrared. Opt. Lett. 38, 462–464 (2013)

    Article  Google Scholar 

  51. M. Kim, A.M.H. Wong, G.V. Eleftheriades, Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys. Rev. X 4, 041042 (2014)

    Google Scholar 

  52. N.M. Estakhri, A. Alu, Wave-front transformation with gradient metasurface. Phys. Rev. X 6, 041008 (2016)

    Google Scholar 

  53. V.S. Asadchy, M. Albooyeh, S.N. Tcvetkova, A. Diaz-Rubio, Y. Radi, S.A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurface. Phys. Rev. B 94, 075142 (2016)

    Article  Google Scholar 

  54. A. Diaz-Rubio, V.S. Asadchy, A. Elsakka, S.A. Tretyakov, From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv. 3, e1602714 (2017)

    Article  Google Scholar 

  55. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  Google Scholar 

  56. L. Li, Y. Yang, C.H. Liang, A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J. Appl. Phys. 110, 063702 (2011)

    Article  Google Scholar 

  57. Y. Shi, J. Yang, H. Shen, Z. K. Meng, T. Hao, Design of broadband metamaterial-based ferromagnetic absorber. Mater. Sci., Adv. Compos. Mater. 2, 1–7 (2018)

    Google Scholar 

  58. Y. Zhang, Y. Shi, C.H. Liang, A broadband tunable graphene-based metamaterial absorber. Opt. Mater. Express 6, 3036–3044 (2016)

    Article  Google Scholar 

  59. Y. Shi, Y.C. Li, T. Hao, L. Li, C.H. Liang, A design of ultra-broadband metamaterial absorber. Waves Random Complex 27, 381–391 (2017)

    Article  Google Scholar 

  60. L. Li, R. Xi, H. Liu, Z. Lv, Broadband polarization-independent and low-profiles optically transparent metamateial absorber. Appl. Phys. Express 11, 052001 (2018)

    Article  Google Scholar 

  61. L. Zhang, Y. Shi, J.X. Yang, X. Zhang, L. Li, Broadband transparent absorber based on indium tin oxide-polyethylene terephthalate film. IEEE Access 7, 137848–137855 (2019)

    Article  Google Scholar 

  62. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, Y. Shi, Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl. Phys. Lett. 108, 121904 (2016)

    Google Scholar 

  63. S. Yu, L. Li, G. Shi, C. Zhu, Y. Shi, Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett. 108, 241901 (2016)

    Article  Google Scholar 

  64. S. Yu, L. Li, G. Shi, Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface. Appl. Phys. Express 9, 082202 (2016)

    Article  Google Scholar 

  65. S. Yu, L. Li, N. Kou, Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces. Opt. Mater. Express 7, 3312–3321 (2017)

    Article  Google Scholar 

  66. N. Kou, S. Yu, L. Li, Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain. Appl. Phys. Express 10, 016701 (2017)

    Article  Google Scholar 

  67. Y. Shi, Y. Zhang, Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray. IEEE Access 6, 5341–5347 (2018)

    Article  Google Scholar 

  68. Z.K. Meng, Y. Shi, W.Y. Wei, Y. Zhang, L. Li, Graphene-based metamaterial transmitarray antenna design for the generation of tunable orbital angular momentum vortex electromagnetic waves. Opt. Mater. Express 9, 3709–3716 (2019)

    Article  Google Scholar 

  69. B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, J. Zhang, Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 98, 254101 (2011)

    Article  Google Scholar 

  70. L. Li, Y.C. Fan, S.X. Yu, C. Zhu, C.H. Liang, Design, fabrication and measurement of highly sub-wavelength double negative metamaterials at HF frequencies. J. Appl. Phys. 113, 271372 (2013)

    Article  Google Scholar 

  71. A. Rajagopalan, A.K. Ramrakhyani, D. Schurig, G. Lazzi, Improving power transfer efficiency of a short-range telemetry system using compact metamaterials. IEEE Trans. Microw. Theory Techn. 62(4), 947–955 (2014)

    Article  Google Scholar 

  72. G. Lipworth, J. Ensworth, K. Seetharam, D. Huang, J.S. Lee, P. Schmalenberg, T. Nomura, M.S. Reynolds, D.R. Smith, Y. Urzhumov, Magnetic metamaterial superlens for increased range wireless power transfer. Sci. Rep. 4, 3642 (2015)

    Article  Google Scholar 

  73. Y. Cho, J.J. Kim, D.-H. Kim, S. Lee, H. Kim, C. Song, S. Kong, H. Kim, C. Seo, S. Ahn, J. Kim, Thin PCB-type metamaterials for improved efficiency and reduced EMF leakage in wireless power transfer systems. IEEE Trans. Microw. Theory Techn. 64(2), 353–364 (2016)

    Google Scholar 

  74. L. Li, H. Liu, H. Zhang, W. Xue, Efficiency wireless power transfer system integrating with metasurface for biological applications. IEEE Trans. Ind. Electron. 65, 3230–3239 (2018)

    Article  Google Scholar 

  75. S. Yu, H. Liu, L. Li, Design of near-field focused metasurface for high efficient wireless power transfer with multi-focus characteristics. IEEE Trans. Industrial Electron. 66, 3993–4002 (2019)

    Article  Google Scholar 

  76. W. Lee, Y.-K. Yoon, Wireless power transfer systems using metamaterials: a review. IEEE Access 8, 147930–147947 (2020)

    Article  Google Scholar 

  77. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014)

    Google Scholar 

  78. S. Liu, T.J. Cui, Concept, working principles, and applications of coding and programmable metamaterials. Adv. Opt. Mater. 5, 1700624 (2017)

    Article  Google Scholar 

  79. V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, Berlin Heidelberg, New York, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Xidian University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L., Shi, Y., Liu, H., Dang, X. (2024). Theory Models of Electromagnetic Metamaterials and Metasurfaces. In: Li, L., Shi, Y., Cui, T.J. (eds) Electromagnetic Metamaterials and Metasurfaces: From Theory To Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-7914-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7914-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7913-4

  • Online ISBN: 978-981-99-7914-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics