Skip to main content

Introduction to Electromagnetic Metamaterials and Metasurfaces

  • Chapter
  • First Online:
Electromagnetic Metamaterials and Metasurfaces: From Theory To Applications
  • 414 Accesses

Abstract

Electromagnetic metamaterials/metasurfaces have long captivated the increasing interest and popularity in flexibly manipulating electromagnetic waves and gradually developed into a novel paradigm of modern science and technology. Over the past decade, there have been a great number of new discoveries and results reported in this exciting area, and metamaterials/metasurfaces have led to a myriad of new engineering applications. This chapter introduces the subject of this book, reviews the general description of the metamaterial/metasurface, and provides a historical perspective on the origin, concept, and milestone of electromagnetic metamaterials/metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Maystre, Electromagnetic study of photonic band gaps. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 3, 975–993 (1994)

    Article  Google Scholar 

  2. E. Yablonovitch, Photonic band-gap crystals. J. Phys. Condens. Matter 5, 2443–2460 (1993)

    Google Scholar 

  3. C.M. Soukoulis, Photonic Band Gap Materials (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996)

    Google Scholar 

  4. E. Yablonovitch, T.J. Gmitter, K.M. Leung, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)

    Article  Google Scholar 

  5. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  Google Scholar 

  6. C.L. Holloway, E.F. Kuester, J.A. Gordon, J.O. Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54, 10–35 (2012)

    Google Scholar 

  7. S. Walia, C.M. Shah, P. Gutruf, H. Nili, D.R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, S. Sriram, Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev. 2, 011303 (2015)

    Article  Google Scholar 

  8. A.E. Minovich, A.E. Miroshnichenko, A.Y. Bykov, T.V. Murzina, D.N. Neshev, Y.S. Kivshar, Functional and nonlinear optical metasurfaces. Laser Photonics Rev. 9, 195–213 (2015)

    Article  Google Scholar 

  9. P. Genevet, F. Capasso, Holographic optical metasurfaces: a review of current progress. Rep. Progr. Phys. Phys. Soc. 78, 024401 (2015)

    Article  Google Scholar 

  10. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces. Science 339, 1232009 (2013)

    Article  Google Scholar 

  11. N. Yu, F. Capasso, Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014)

    Article  Google Scholar 

  12. G.G. Macfarlane, Surface impedance of an infinite parallel-wire grid at oblique angles of incidence. J. Inst. Electr. Eng. Part IIIA Radiolocation 93(10), 1523–1527 (1946)

    Google Scholar 

  13. H. Lamb, On the reflection and transmission of electric waves by a metallic grating. Proc. London Math. Soc. s1–29, 523–546 (1897)

    Google Scholar 

  14. R. Mittra, C.H. Chan, T. Cwik, Techniques for analyzing frequency selective surfaces-a review. Proc. IEEE 76, 1593–1615 (1988)

    Article  Google Scholar 

  15. B.A. Munk, Frequency Selective Surface and Grid Array (Wiley, New York, 1995)

    Google Scholar 

  16. B.A. Munk, Frequency Selective Surfaces. Theory and Design (Wiley, New York, 2000)

    Book  Google Scholar 

  17. D. Rittenhouse, An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse. Trans. Am. Philos. Soc. 2, 201–206 (1786)

    Google Scholar 

  18. G. Marconi, C.S. Franklin, Reflector for Use in Wireless Telegraphy and Telephony. US Patent, 1301473 A, 1919

    Google Scholar 

  19. I. Anderson, On the theory of self-resonant grids. Bell Syst. Tech. J. 54, 1725–1731 (1975)

    Article  Google Scholar 

  20. M. Al-Joumayly, N. Behdad, A new technique for design of low-profile, second-order, bandpass frequency selective surfaces. IEEE Trans. Antennas Propag. 57, 452–459 (2009)

    Google Scholar 

  21. M.A. Al-Joumayly, N. Behdad, A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non-resonant constituting elements. IEEE Trans. Antennas Propag. 58, 4033–4041 (2010)

    Google Scholar 

  22. Q.H. Sun, Q. Cheng, H.S. Xu, B. Zhou, T.J. Cui, A new type of band-pass FSS based on metamaterial structures, in 2008 International Workshop on Metamaterials, pp. 267–269 (2008)

    Google Scholar 

  23. F. Bayatpur, K. Sarabandi, Single-layer high-order miniaturized-element frequency-selective surfaces. IEEE Trans. Microw. Theory Tech. 56, 774–781 (2008)

    Google Scholar 

  24. K. Sarabandi, N. Behdad, A frequency selective surface with miniaturized elements. IEEE Trans. Antennas Propag. 55, 1239–1245 (2007)

    Google Scholar 

  25. Y. Shi, P.P. Chu, Z.K. Meng, Ultra-wideband hybrid polarization conversion-absorption metasurface with a transmission window and narrow transition bands. J. Phys. D Appl. Phys. 56, 095102 (2023)

    Article  Google Scholar 

  26. X. Wu, Z.B. Pei, S.B. Qu, Z. Xu, P. Bai, J.F. Wang, X.H. Wang, H. Zhou, Design of metamaterial frequency selective surface with polarization selectivity. Acta. Phys. Sin. 60, 271–275 (2011)

    Google Scholar 

  27. J.W.S. Rayleigh, On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes. Phil. Mag. 26, 256–265 (1888)

    Article  Google Scholar 

  28. S. John, Strong localization of photons in certain disordered dielectric super lattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  Google Scholar 

  29. K.M. Ho, C.T. Chan, C.M. Soukoulis, R. Biswas, M. Sigalas, Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Commun. 89, 413–416 (1994)

    Google Scholar 

  30. D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999)

    Google Scholar 

  31. A. Foroozesh, L. Shafai, Application of combined electric- and magnetic-conductor ground planes for antenna performance enhancement. Can. J. Electr. Comput. Eng. 33, 87–98 (2008)

    Google Scholar 

  32. E. Rajo-Iglesias, Ó. Quevedo-Teruel, L. Inclan-Sanchez, Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate. IEEE Trans. Antennas Propag. 56, 1648–1655 (2008)

    Google Scholar 

  33. Y. Fan, Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 51, 2936–2946 (2003)

    Google Scholar 

  34. M.A. Hiranandani, A.B. Yakovlev, A.A. Kishk, Artificial magnetic conductors realised by frequency-selective surfaces on a grounded dielectric slab for antenna applications. IEE Proc. Microw. Antennas Propag. 153, 487–493 (2006)

    Article  Google Scholar 

  35. A.P. Feresidis, G. Goussetis, S. Wang, J.C. Vardaxoglou, Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Trans. Antennas Propag. 53, 209–215 (2005)

    Google Scholar 

  36. F. Costa, S. Genovesi, A. Monorchio, On the bandwidth of high-impedance frequency selective surfaces. IEEE Antennas Wirel. Propag. Lett. 8, 1341–1344 (2010)

    Google Scholar 

  37. J. Sherman, Properties of focused apertures in the Fresnel region. IEEE Trans. Antennas Propag. 10, 399–408 (1962)

    Google Scholar 

  38. J. Huang, J.A. Encinar, Reflectarray Antenna (Wiley, Piscataway, NJ, 2005)

    Google Scholar 

  39. D. Berry, R. Malech, W. Kennedy, The reflectarray antenna. IEEE Trans. Antennas Propag. 11, 645–651 (1963)

    Google Scholar 

  40. R.D. Javor, X.-D. Wu, K. Chang, Design and performance of a microstrip reflectarray antenna. IEEE Trans. Antennas Propag. 43, 932–939 (1995)

    Google Scholar 

  41. A.H. Abdelrahman, A.Z. Elsherbeni, F. Yang, Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs. IEEE Trans. Antennas Propag. 62, 690–697 (2014)

    Google Scholar 

  42. A.H. Abdelrahman, Y. Fan, A.Z. Elsherbeni, P. Nayeri, Analysis and design of transmitarray antennas. Synth. Lect. Antennas 6, 1–175 (2017)

    Article  Google Scholar 

  43. S.B. Glybovski, S.A. Tretyakov, P.A. Belov, Y.S. Kivshar, C.R. Simovski, Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1–72 (2016)

    Google Scholar 

  44. P. Nayeri, F. Yang, A.Z. Elsherbeni, Design and experiment of a single-feed quad-beam reflectarray antenna. IEEE Trans. Antennas Propag. 60, 1166–1171 (2012)

    Google Scholar 

  45. A.H. Abdelrahman, P. Nayeri, A.Z. Elsherbeni, Y. Fan, Design of single-feed multi-beam transmitarray antennas, in 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (2014)

    Google Scholar 

  46. B. Rahmati, M.O. Bagheri, H. Hassani, Dual-band, dual-polarized metallic slot transmitarray antenna. IET Microw. Antennas Propag. 11, 402–409 (2016)

    Google Scholar 

  47. C. Han, J. Huang, K. Chang, A high efficiency offset-fed X/Ka-dual-band reflectarray using thin membranes. IEEE Trans. Antennas Propag. 53, 2792–2798 (2005)

    Google Scholar 

  48. P. Zhang, L. Li, X. Zhang, H. Liu, Y. Shi, Design, measurement and analysis of near-field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer. IEEE Access 7, 110387–110399 (2019)

    Article  Google Scholar 

  49. S. Yu, H. Liu, L. Li, Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics. IEEE Trans. Industr. Electron. 66, 3993–4002 (2019)

    Google Scholar 

  50. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, Y. Shi, Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl. Phys. Lett. 108, 121903 (2016)

    Google Scholar 

  51. S. Yu, L. Li, G. Shi, C. Zhu, Y. Shi, Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett. 108, 241901 (2016)

    Article  Google Scholar 

  52. N. Kou, S. Yu, L. Li, Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain. Appl. Phys. Express 10, 016701 (2017)

    Article  Google Scholar 

  53. H. Kamoda, T. Iwasaki, T. Kuki, 60-GHz electrically reconfigurable reflectarray using p-i-n diode, in 2009 IEEE MTT-S International Microwave Symposium Digest, pp. 1177–1180 (2009)

    Google Scholar 

  54. J.P. Gianvittorio, Y. Rahmat-Samii, Reconfigurable patch antennas for steerable reflectarray applications. IEEE Trans. Antennas Propag. 54, 1388–1392 (2006)

    Google Scholar 

  55. J.Y. Lau, S.V. Hum, Reconfigurable transmitarray design approaches for beamforming applications. IEEE Trans. Antennas Propag. 60, 5679–5689 (2012)

    Google Scholar 

  56. V.G. Veselago, The Electrodynamics of substances with simultaneously negative values of ε and μ. Phys. Usp. 10, 509–514 (1968)

    Google Scholar 

  57. L. Horace, On group velocity, Proc. London Math. Soc. (1904)

    Google Scholar 

  58. G.D. Malyuzhinets, A note on the radiation principle. Zh. Tekh. Fiz. 21, 940–942 (1951)

    Google Scholar 

  59. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  Google Scholar 

  60. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Google Scholar 

  61. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  Google Scholar 

  62. D.R. Smith, N. Kroll, Negative refractive index in left-handed materials. Phys. Rev. Lett. 85, 2933–2936 (2000)

    Article  Google Scholar 

  63. T.J. Cui, J.A. Kong, Time-domain electromagnetic energy in a frequency-dispersive left-handed medium. Phys. Rev. B 70, 205106 (2004)

    Article  Google Scholar 

  64. T.J. Cui, J.A. Kong, Causality in the propagation of transient electromagnetic waves in a left-handed medium. Phys. Rev. B 70, 165113 (2004)

    Article  Google Scholar 

  65. https://en.wikipedia.org/wiki/Metamaterial

  66. D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, J.B. Pendry, Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506–1508 (2003)

    Article  Google Scholar 

  67. D.R. Smith, J.J. Mock, A.F. Starr, D. Schurig, Gradient index metamaterials. Phys. Rev. E, 036609 (2005)

    Google Scholar 

  68. U. Leonhardt, Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  MathSciNet  Google Scholar 

  69. J.B. Pendry, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MathSciNet  Google Scholar 

  70. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Google Scholar 

  71. W.X. Jiang, T.J. Cui, H.F. Ma, X.Y. Zhou, Q. Cheng, Cylindrical-to-plane-wave conversion via embedded optical transformation. Appl. Phys. Lett. 92, 261903 (2008)

    Article  Google Scholar 

  72. W.X. Jiang, T.J. Cui, Q. Cheng, J.Y. Chin, X.M. Yang, R. Liu, D.R. Smith, Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces. Appl. Phys. Lett. 92, 264101 (2008)

    Google Scholar 

  73. X.J. Wei, T.J. Cui, Y.Z. Xiao, M.Y. Xin, C. Qiang, Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials. Phys. Rev. E 78, 066607 (2009)

    Google Scholar 

  74. M. Rahm, D. Schurig, D.A. Roberts, S.A. Cummer, D.R. Smith, J.B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008)

    Google Scholar 

  75. R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui, D.R. Smith, Broadband ground-plane cloak. Science 323, 366–369 (2009)

    Article  Google Scholar 

  76. H.F. Ma, T.J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 21 (2010)

    Google Scholar 

  77. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337 (2010)

    Article  Google Scholar 

  78. Q. Cheng, T.J. Cui, W.X. Jiang, B.G. Cai, An electromangetic black hole made of metamaterials. New J. Phys. 12, 063006 (2010)

    Article  Google Scholar 

  79. A. Lai, T. Itoh, C. Caloz, Composite right/left-handed transmission line metamaterials. IEEE Microw. Mag. 5, 34–50 (2004)

    Google Scholar 

  80. C. Caloz, T. Itoh, A. Rennings, CRLH metamaterial leaky-wave and resonant antennas. IEEE Antennas Propag. Mag. 50(5), 25–39 (2008)

    Google Scholar 

  81. C. Caloz, T. Itoh, A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics. IEEE Microw. Wirel. Compon. Lett. 14(1), 31–33 (2004)

    Article  Google Scholar 

  82. S. Lim, C. Caloz, T. Itoh, Electronically scanned composite right/left handed microstrip leaky-wave antenna. IEEE Microwave Wirel. Compon. Lett. 14(6), 277–279 (2004)

    Google Scholar 

  83. L. Li, Z. Jia, F. Huo, W. Han, A novel compact multiband antenna employing dual-band CRLH-TL for smart mobile phone application. IEEE Antennas Wirel. Propag. Lett. 12, 1688–1691 (2013)

    Google Scholar 

  84. W.X. Jiang, T.J. Cui, Radar illusion via metamaterials. Phys. Rev. E 83, 026601 (2011)

    Article  Google Scholar 

  85. B.D.F. Casse, W.T. Lu, Y.J. Huang, E. Gultepe, L. Menon, S. Sridhar, Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl. Phys. Lett. 96, 023114 (2010)

    Article  Google Scholar 

  86. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  Google Scholar 

  87. Q. Ma, C.B. Shi, G.D. Bai, T.Y. Chen, A. Noor, T.J. Cui, Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit. Adv. Opt. Mater. 5, 1700548 (2017)

    Article  Google Scholar 

  88. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012)

    Article  Google Scholar 

  89. H.L. Zhu, S.W. Cheung, K.L. Chung, T.I. Yuk, Linear-to-circular polarization conversion using metasurface. IEEE Trans. Antennas Propag. 61, 4615–4623 (2013)

    Google Scholar 

  90. P. Xu, G.C. Wang, X. Cai, H.Y. Shen, W.X. Jiang, Design and optimization of high-efficiency meta-devices based on the equivalent circuit model and theory of electromagnetic power energy storage. J. Phys. D Appl. Phys. 55, 195303 (2022)

    Article  Google Scholar 

  91. Z. Wang, X. Ding, K. Zhang, B. Ratni, S.N. Burokur, X. Gu, Q. Wu, Huygens metasurface holograms with the modulation of focal energy distribution. Adv. Opt. Mater. 6, 1800121 (2018)

    Google Scholar 

  92. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang, Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015)

    Google Scholar 

  93. N.M. Estakhrin, A. Alu, Wave-front transformation with gradient metasurfaces. Phys. Rev. X 6, 041008 (2016)

    Google Scholar 

  94. V.S. Asadchy, M. Albooyeh, S.N. Tcvetkova, A. Diaz-Rubio, Y. Radi, S.A. Tretyakov, Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B 94, 075142 (2016)

    Article  Google Scholar 

  95. J. Zhou, P. Zhang, J. Han, L. Li, Y. Huang, Metamaterials and metasurfaces for wireless power transfer and energy harvesting. Proc. IEEE 110, 31–55 (2022)

    Article  Google Scholar 

  96. L. Li, X. Zhang, C. Song, W. Zhang, Y. Huang, Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer. IEEE Trans. Microw. Theory Tech. 69, 1518–1528 (2021)

    Google Scholar 

  97. Y. Shi, H.X. Meng, H.J. Wang, Polarization conversion metasurface design based on characteristic mode rotation and its application into wideband and miniature antenna with low radar cross section. Opt. Express 29(5), 6794–6809 (2021)

    Article  Google Scholar 

  98. Y. Shi, Z.K. Meng, W.Y. Wei, W. Zheng, L. Li, Characteristic mode cancellation method and its application for antenna RCS reduction. IEEE Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019)

    Google Scholar 

  99. X. Zhang, Q. Li, F. Liu, Controlling angular dispersions in optical metasurfaces. Light Sci. Appl. 9, 1286–1297 (2020)

    Google Scholar 

  100. M. Li, L. Shen, L. Jing, Origami metawall: mechanically controlled absorption and deflection of light. Adv. Sci. 6, 1901434 (2019)

    Article  Google Scholar 

  101. Q. Sun, Z. Zhang, Y. Huang, Asymmetric transmission and wavefront manipulation toward dual-frequency meta-hologram. ACS Photonics 6, 1541–1546 (2019)

    Article  Google Scholar 

  102. X.G. Zhang, Q. Yu, W.X. Jiang, Polarization-controlled dual-programmable metasurfaces. Adv. Sci. 7, 1903328 (2020)

    Google Scholar 

  103. O. Avayu, E. Almeida, Y. Prior, T. Ellenbogen, Composite functional metasurfaces for multispectral achromatic optics. Nature Commun. 8, 14992 (2017)

    Article  Google Scholar 

  104. G.D. Bai, Q. Ma, S. Iqbal, L. Bao, H.B. Jing, L. Zhang, H.T. Wu, R.Y. Wu, H.C. Zhang, C. Yang, T.J. Cui, Multitasking shared aperture enabled with multiband digital coding metasurface. Adv. Opt. Mater. 6, 18800657 (2018)

    Google Scholar 

  105. M.R.M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, M. Jarrahi, Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci. Rep. 6, 35439 (2016)

    Article  Google Scholar 

  106. B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J.A. Deibel, M. Koch, Discrete terahertz beam steering with an electrically controlled liquid crystal device. J. Infrared Millm. Terahertz Waves 33, 1117–1122 (2012)

    Google Scholar 

  107. B.C. Smith, J.F. Whitaker, S.C. Rand, Steerable THz pulses from thin emitters via optical pulse-front tilt. Opt. Express 24, 20755–20762 (2016)

    Article  Google Scholar 

  108. Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, H. Shinoda, Terahertz beam steering and variable focusing using programmable diffraction gratings. Opt. Express 21, 2347–2354 (2013)

    Article  Google Scholar 

  109. D. Shrekenhamer, J. Montoya, S. Krishna, W.J. Padilla, Four-color metamaterial absorber THz spatial light modulator. Adv. Opt. Mater. 1, 905–909 (2013)

    Article  Google Scholar 

  110. G.C. Della, N. Engheta, Digital metamaterials. Nat. Mater. 13, 1115–1121 (2014)

    Article  Google Scholar 

  111. T.J. Cui, M. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3(10), e218 (2014)

    Google Scholar 

  112. T.J. Cui, S. Liu, L. Zhang, Information metamaterials and metasurfaces. J. Mater. Chem. C 5, 3644–3668 (2017)

    Article  Google Scholar 

  113. Q. Ma, G. Bai, H. Jing, C. Yang, L. Li, T.J. Cui, Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl. 8, 98 (2019)

    Google Scholar 

  114. X. Zhang, Y. Sun, Q. Yu, Q. Cheng, W.X. Jiang, C.-W. Qiu, T.J. Cui, Smart doppler cloak operating in broad band and full polarizations. Adv. Mater. 33, 2007966 (2021)

    Google Scholar 

  115. F. Aieta, P. Genevet, N. Yu, M.A. Kats, Z. Gaburro, F. Capasso, Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 12, 1702–1706 (2012)

    Article  Google Scholar 

  116. X. Ni, A.V. Kildishev, V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013)

    Google Scholar 

  117. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, C. Qiu, A reconfigurable active huygens’ metalens. Adv. Mater. 29, 1606422 (2017)

    Article  Google Scholar 

  118. H. Wu, S. Liu, X. Wan, L. Zhang, D. Wang, L. Li, T.J. Cui, Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Adv. Sci. 4, 1700098 (2017)

    Article  Google Scholar 

  119. H.T. Wu, D. Wang, X. Fu, S. Liu, L. Zhang, G.D. Bai, C. Zhang, W.X. Jiang, H.L. Jiang, R.Y. Wu, Space-frequency-domain gradient metamaterials. Adv. Opt. Mater. 6, 1801086 (2018)

    Article  Google Scholar 

  120. L. Zhang, X.Q. Chen, S. Liu, Q. Zhang, J. Zhao, J.Y. Dai, G.D. Bai, X. Wan, Q. Cheng, G. Castaldi, V. Galdi, T.J. Cui, Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018)

    Google Scholar 

  121. J.Y. Lau, S.V. Hum, A wideband reconfigurable transmitarray element. IEEE Trans. Antennas Propag. 60, 1303–1311 (2012)

    Google Scholar 

  122. P.Y. Chen, J. Soric, Y.R. Padooru, H.M. Bernety, A.B. Yakovlev, A. Alù, Nanostructured graphene metasurface for tunable terahertz cloaking. New J. Phys. 15, 123029 (2013)

    Article  Google Scholar 

  123. Y.R. Padooru, A.B. Yakovlev, C.S.R. Kaipa, G.W. Hanson, F. Medina, F. Mesa, Dual capacitive-inductive nature of graphene metasurface: transmission characteristics at low-terahertz frequencies, in IEEE Antennas Propagation Society International Symposium, pp. 1598–1599 (2013)

    Google Scholar 

  124. E. Carrasco, J. Perruisseau-Carrier, Reflectarray antenna at terahertz using graphene. IEEE Antennas Wirel. Propag. Lett. 12, 253–256 (2013)

    Google Scholar 

  125. W.J. Padilla, M.T. Aronsson, C. Highstrete, M. Lee, A.J. Taylor, R.D. Averitt, Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys. Rev. B 75, 041102 (2007)

    Article  Google Scholar 

  126. H.-T. Chen, J.F. O’Hara, A.J. Taylor, R.D. Averitt, C. Highstrete, M. Lee, W.J. Padilla, Complementary planar terahertz metamaterials. Opt. Express 15, 1084–1095 (2007)

    Article  Google Scholar 

  127. C. Jansen, I.A.I. Al-Naib, N. Born, M. Koch, Terahertz metasurfaces with high Q-factors. Appl. Phys. Lett. 98, 051109 (2011)

    Article  Google Scholar 

  128. M. Farmahini-Farahani, H. Mosallaei, Birefringent reflectarray metasurface for beam engineering in infrared. Opt. Lett. 38, 462–464 (2013)

    Article  Google Scholar 

  129. F. Qin, L. Ding, L. Zhang, F. Monticone, C.C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Slu, C.W. Qiu, Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv. 2, e1501168 (2016)

    Article  Google Scholar 

  130. D. Sell, J. Yang, S. Doshay, K. Zhang, J.A. Fan, Visible light metasurfaces based on single crystal silicon. ACS Photonics 3(10), 1919–1925 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Xidian University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L., Shi, Y., Cui, T.J. (2024). Introduction to Electromagnetic Metamaterials and Metasurfaces. In: Li, L., Shi, Y., Cui, T.J. (eds) Electromagnetic Metamaterials and Metasurfaces: From Theory To Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-7914-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7914-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7913-4

  • Online ISBN: 978-981-99-7914-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics