Skip to main content

Role of Gold Nanoparticles for Targeted Drug Delivery

  • Chapter
  • First Online:
Metal and Metal-Oxide Based Nanomaterials

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 131 Accesses

Abstract

The possibility of using nanotechnology to diagnose or treat diseases is growing. New and improved nanomaterials are now being used in pharmaceutical and biomedical applications because of advancements in nanotechnology. Creating and targeting sure systems still requires work today, despite recent advances, to be therapeutically valuable. Due to their high thermal stability and low size-to-volume ratio, metal nanoparticles are widely used in biological sectors. Gold nanoparticles (AuNPs) are an appropriate choice for biomedical applications owing to ease of synthesis, stability, customization, low toxicity, and simplicity in identification. AuNPs can potentially be used in the early detection, diagnosis, and treatment of diseases for medical imaging, drug delivery, and cancer therapy. The synthesis of AuNPs has been carried out using various chemical techniques over the past few decades. However, more recently, emphasis has been drawn to more contemporary environmentally friendly green technologies. Numerous functionalizing moieties, such as ligands, medicinal substances, DNA, amino acids, proteins, peptides, and oligonucleotides, can be coupled to AuNPs. Recent research suggests that AuNPs can be valuable drug carriers since they penetrate blood arteries to reach the target and enter within organelles. The latest developments in various AuNP synthesis techniques are the main topic of this chapter. Additionally, AuNPs functionalization techniques and application mechanisms in transporting pharmaceuticals and macromolecules. The chapter aims to explain the relationship between these nanomaterials in the complex environment to reach the target site and how to formulate the efficient, targeted drug delivery for complicated settings and constantly observe the toxicity on the rationale for designing such delivery complexes. This chapter will provide information on the research, potential, and limitations of developing nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexis, F., Basto, P., Levy-Nissenbaum, E., Radovic-Moreno, A. F., Zhang, L., Pridgen, E., Wang, A. Z., Marein, S. L., Westerhof, K., Molnar, L. K., & Farokhzad, O. C. (2008). HER-2-Targeted nanoparticle–affibody bioconjugates for cancer therapy. Chem Med Chem: Chemistry Enabling Drug Discovery, 3(12), 1839–1843.

    Article  CAS  Google Scholar 

  • Anshup, V. J. S., Subramaniam, C., Kumar, R. R., Priya, S., Kumar, T. S., Omkumar, R. V., John, A., & Pradeep, T. (2005). Growth of gold nanoparticles in human cells. Langmuir, 21(25), 11562–11567.

    Article  CAS  Google Scholar 

  • Bachheti, R. K., & Bachheti, A. (Eds.). (2023). Secondary metabolites from medicinal plants: Nanoparticles synthesis and their applications. CRC Press. https://doi.org/10.1201/9781003213727

  • Bachheti, R. K., Worku, L. A., Gonfa, Y. H., Zebeaman, M., Pandey, D. P., & Bachheti, A. (2022). Prevention and treatment of cardiovascular diseases with plant phytochemicals: A review. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2022/5741198

  • Beik, J., Khateri, M., Khosravi, Z., Kamrava, S. K., Kooranifar, S., Ghaznavi, H., & Shakeri-Zadeh, A. (2019). Gold nanoparticles in combinatorial cancer therapy strategies. Coordination Chemistry Reviews, 387, 299–324.

    Article  CAS  Google Scholar 

  • Bhumkar, D. R., Joshi, H. M., Sastry, M., & Pokharkar, V. B. (2007). Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharmaceutical Research, 24, 1415–1426.

    Article  CAS  Google Scholar 

  • Boisselier, E., & Astruc, D. (2009). Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews, 38(6), 1759–1782.

    Article  CAS  Google Scholar 

  • Bonoiu, A. C., Mahajan, S. D., Ding, H., Roy, I., Yong, K. T., Kumar, R., Hu, R., Bergey, E. J., Schwartz, S. A., & Prasad, P. N. (2009). Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proceedings of the National Academy of Sciences, 106(14), 5546–5550.

    Article  CAS  Google Scholar 

  • Braunwald, E. (2017). Cardiomyopathies: An overview. Circulation Research, 121(7), 711–721.

    Article  CAS  Google Scholar 

  • Brinson, B. E., Lassiter, J. B., Levin, C. S., Bardhan, R., Mirin, N., & Halas, N. J. (2008). Nanoshells made easy: Improving Au layer growth on nanoparticle surfaces. Langmuir, 24, 14166–14171.

    Article  CAS  Google Scholar 

  • Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications., 7, 801–802.

    Article  Google Scholar 

  • Burygin, G. L., Khlebtsov, B. N., Shantrokha, A. N., Dykman, L. A., Bogatyrev, V. A., & Khlebtsov, N. G. (2009). On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Research Letters, 4, 794–801.

    Article  CAS  Google Scholar 

  • Casadevall, A. (1996). Antibody-based therapies for emerging infectious diseases. Emerging Infectious Diseases, 2, 200.

    Article  CAS  Google Scholar 

  • Chen, C. C., Lin, Y. P., Wang, C. W., Tzeng, H. C., Wu, C. H., Chen, Y. C., Chen, C. P., Chen, L. C., & Wu, Y. C. (2006a). DNA−gold nanorod conjugates for remote control of localized gene expression by near-infrared irradiation. Journal of the American Chemical Society, 128(11), 3709–3715.

    Article  CAS  Google Scholar 

  • Chen, J., McLellan, J. M., Siekkinen, A., Xiong, Y., Li, Z. Y., & Xia, Y. (2006b). Facile synthesis of gold-silver nanocages with controllable pores on the surface. Journal of the American Chemical Society, 128(46), 14776–14777.

    Article  CAS  Google Scholar 

  • Chen, J., Saeki, F., Wiley, B. J., Cang, H., Cobb, M. J., Li, Z. Y., Au, L., Zhang, H., Kimmey, M. B., Li, X., & Xia, Y. (2005). Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Letters, 5(3), 473–477.

    Article  CAS  Google Scholar 

  • Chithrani, B. D., & Chan, W. C. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7(6), 1542–1550.

    Article  CAS  Google Scholar 

  • Cunliffe, D., Kirby, A., & Alexander, C. (2005). Molecularly imprinted drug delivery systems. Advanced Drug Delivery Reviews, 57(12), 1836–1853.

    CAS  Google Scholar 

  • Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41(7), 2740–2779.

    Article  CAS  Google Scholar 

  • Dreaden, E. C., Mackey, M. A., Huang, X., Kang, B., & El-Sayed, M. A. (2011). Beating cancer in multiple ways using nanogold. Chemical Society Reviews, 40(7), 3391–3404.

    Article  CAS  Google Scholar 

  • Dykman, L., & Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 41(6), 2256–2282.

    Article  CAS  Google Scholar 

  • Ealia, S. A., & Saravanakumar, M. P. (2017). A review of the classification, characterization, synthesis of nanoparticles and their application. In IOP Conference Series: Materials Science and Engineering, 263, 032019.

    Article  Google Scholar 

  • Elbayoumi, T. A. (2010). Nano drug-delivery systems in cancer therapy: Gains, pitfalls, and considerations in DMPK and PD. Therapeutic Delivery, 1(2), 215–219.

    Article  CAS  Google Scholar 

  • Flora, G. D., & Nayak, M. K. (2019). A brief review of cardiovascular diseases, associated risk factors, and current treatment regimes. Current Pharmaceutical Design, 25(38), 4063–4084.

    Article  CAS  Google Scholar 

  • Ghann, W. E., Aras, O., Fleiter, T., & Daniel, M. C. (2012). Syntheses and characterization of lisinopril-coated gold nanoparticles as highly stable targeted CT contrast agents in cardiovascular diseases. Langmuir, 28(28), 10398–10408.

    Article  CAS  Google Scholar 

  • Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008a). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60(11), 1307–1315.

    Article  CAS  Google Scholar 

  • Ghosh, P. S., Kim, C. K., Han, G., Forbes, N. S., & Rotello, V. M. (2008b). Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano, 2, 2213–2218.

    Article  CAS  Google Scholar 

  • Han, G., Martin, C. T., & Rotello, V. M. (2006a). Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Chemical Biology and Drug Design, 67(1), 78–82.

    Article  CAS  Google Scholar 

  • Han, G., You, C. C., Kim, B. J., Turingan, R. S., Forbes, N. S., Martin, C. T., & Rotello, V. M. (2006b). Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angewandte Chemie, 118(19), 3237–3241.

    Article  Google Scholar 

  • Hiramatsu, H., & Osterloh, F. E. (2004). A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chemistry of Materials, 16(13), 2509–2511.

    Article  CAS  Google Scholar 

  • Huang, X., & El-Sayed, M. A. (2010). Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research, 1(1), 13–28.

    Article  Google Scholar 

  • Huang, X., Neretina, S., & El-Sayed, M. A. (2009). Gold nanorods: From synthesis and properties to biological and biomedical applications. Advanced Materials, 21(48), 4880–4910.

    Article  CAS  Google Scholar 

  • Husen, A. (2017). Gold nanoparticles from plant system: synthesis, characterization and their application. In M. Ghorbanpourn, K. Manika, A. Varma (Eds.), Nanoscience and plant–soil systems (Vol. 48, pp. 455–479). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-46835-8_17

  • Husen, A. (2022). Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Elsevier Inc. https://doi.org/10.1016/C2021-0-00054-7

  • Husen, A. (2023). Nanomaterials and nanocomposites exposures to plants (Response, Interaction, Phytotoxicity and Defense Mechanisms). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-99-2419-6

  • Husen, A., & Iqbal, M. (2019). Nanomaterials and plant potential. Springer International Publishing AG. https://doi.org/10.1007/978-3-030-05569-1

  • Husen, A., Rahman, Q. I., Iqbal, M., & Yassin, M. O. (2019). Plant-mediated fabrication of gold nanoparticles and their applications. In A. Husen, M. Iqbal (Eds.), Nanomaterials and plant potential (pp. 71–110). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-05569-1_3

  • Husen, A., & Siddiqi, K. S. (2023) Advances in smart nanomaterials and their applications. Elsevier Inc. https://doi.org/10.1016/C2021-0-02202-1

  • Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials, 13(18), 1389–1393.

    Article  CAS  Google Scholar 

  • Joshi, P., Chakraborti, S., Ramirez-Vick, J. E., Ansari, Z. A., Shanker, V., Chakrabarti, P., & Singh, S. P. (2012). The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids and Surfaces b: Biointerfaces, 95, 195–200.

    Article  CAS  Google Scholar 

  • Jurgons, R., Seliger, C., Hilpert, A., Trahms, L., Odenbach, S., & Alexiou, C. (2006). Drug-loaded magnetic nanoparticles for cancer therapy. Journal of Physics: Condensed Matter., 18(38), S2893.

    CAS  Google Scholar 

  • Jyoti, A., Singh, S. P., Yashpal, M., Dwivedi, P. D., & Shanker, R. (2011). Rapid detection of enterotoxigenic Escherichia coli gene using bio-conjugated gold nanoparticles. Journal of Biomedical Nanotechnology, 7(1), 170–171.

    Article  CAS  Google Scholar 

  • Kalimuthu, K., Lubin, B. C., Bazylevich, A., Gellerman, G., Shpilberg, O., Luboshits, G., & Firer, M. A. (2018). Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. Journal of Nanobiotechnology, 16(1), 1–3.

    Article  Google Scholar 

  • Khan, A., Jahan, S., Imtiyaz, Z., Alshahrani, S., AntarMakeen, H., Mohammed Alshehri, B., Kumar, A., Arafah, A., & Rehman, M. U. (2020). Neuroprotection: Targeting multiple pathways by naturally occurring phytochemicals. Biomedicines, 8(8), 284.

    Article  CAS  Google Scholar 

  • Khandelia, R., Jaiswal, A., Ghosh, S. S., & Chattopadhyay, A. (2013). Gold nanoparticle–protein agglomerates as versatile nanocarriers for drug delivery. Small (weinheim an Der Bergstrasse, Germany), 9(20), 3494–3505.

    Article  CAS  Google Scholar 

  • Kim, E. Y., Schulz, R., Swantek, P., Kunstman, K., Malim, M. H., & Wolinsky, S. M. (2012). Gold nanoparticle-mediated gene delivery induces widespread changes in the expression of innate immunity genes. Gene Therapy, 19(3), 347–353.

    Article  CAS  Google Scholar 

  • Kumar, A., Zhang, X., & Liang, X. J. (2013). Gold nanoparticles: An emerging paradigm for targeted drug delivery system. Biotechnology Advances, 31(5), 593–606.

    Article  CAS  Google Scholar 

  • Kundu, S., Peng, L., & Liang, H. (2008). A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation. Inorganic Chemistry, 47(14), 6344–6352.

    Article  CAS  Google Scholar 

  • Lee, S. H., Bae, K. H., Kim, S. H., Lee, K. R., & Park, T. G. (2008). Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. International Journal of Pharmaceutics, 364(1), 94–101.

    Article  CAS  Google Scholar 

  • Lee, J. H., Choi, S. U., Jang, S. P., & Lee, S. Y. (2012). Production of aqueous spherical gold nanoparticles using a conventional ultrasonic bath. Nanoscale Research Letters, 7, 1–7.

    Article  CAS  Google Scholar 

  • Leyu, A. M., Debebe, S. E., Bachheti, A., Rawat, Y. S., & Bachheti, R. K. (2023). Green Synthesis of gold and silver nanoparticles using invasive alien plant Parthenium hysterophorus and their antimicrobial and antioxidant activities. Sustainability, 15(12), 9456.

    Article  CAS  Google Scholar 

  • Li, W., Cao, Z., Liu, R., Liu, L., Li, H., Li, X., Chen, Y., Lu, C., & Liu, Y. (2019). AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 4222–4233.

    Article  Google Scholar 

  • Li, X., Robinson, S. M., Gupta, A., Saha, K., Jiang, Z., Moyano, D. F., Sahar, A., Riley, M. A., & Rotello, V. M. (2014). Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano, 8, 10682–10686.

    Article  CAS  Google Scholar 

  • Lima, E., Guerra, R., Lara, V., & Guzmán, A. (2013). Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chemistry Central Journal, 7, 1–7.

    Article  Google Scholar 

  • Liu, L., Li, S., Liu, L., Deng, D., & Xia, N. (2012). Simple, sensitive, and selective detection of dopamine using dithiobis (succinimidyl propionate)-modified gold nanoparticles as colorimetric probes. The Analyst, 137(16), 3794–3799.

    Article  CAS  Google Scholar 

  • Loo, C., Lowery, A., Halas, N., West, J., & Drezek, R. (2005). Immunotargetednanoshells for integrated cancer imaging and therapy. Nano Letters, 5(4), 709–711.

    Article  CAS  Google Scholar 

  • Ma, H., Yin, B., Wang, S., Jiao, Y., Pan, W., Huang, S., Chen, S., & Meng, F. (2004). Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem, 5(1), 68–75.

    Article  CAS  Google Scholar 

  • McIntosh, C. M., Esposito, E. A., Boal, A. K., Simard, J. M., Martin, C. T., & Rotello, V. M. (2001). Inhibition of DNA transcription using cationic mixed monolayer-protected gold clusters. Journal of the American Chemical Society, 123(31), 7626–7629.

    Article  CAS  Google Scholar 

  • Mody, V. V., Singh, A., & Wesley, B. (2013). Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. European Journal of Nanomedicine, 5(1), 11–21.

    Article  CAS  Google Scholar 

  • Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic nanoparticles. Journal of Pharmacy and Allied Sciences, 2(4), 282.

    CAS  Google Scholar 

  • Mohamed, M. M., Fouad, S. A., Elshoky, H. A., Mohammed, G. M., & Salaheldin, T. A. (2017). Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. International Journal of Veterinary Science and Medicine, 5(1), 23–29.

    Article  Google Scholar 

  • Morens, D. M., & Fauci, A. S. (2013). Emerging infectious diseases: Threats to human health and global stability. PLoS Pathogens, 9(7), e1003467.

    Article  CAS  Google Scholar 

  • Morille, M., Passirani, C., Vonarbourg, A., Clavreul, A., & Benoit, J. P. (2008). Progress in developing cationic vectors for nonviral systemic gene therapy against cancer. Biomaterials, 29(24–25), 3477–3496.

    Article  CAS  Google Scholar 

  • Mubarak Ali, D., Thajuddin, N., Jeganathan, K., & Gunasekaran, M. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces b: Biointerfaces, 85(2), 360–365.

    Google Scholar 

  • Murphy, C. J., Gole, A. M., Stone, J. W., Sisco, P. N., Alkilany, A. M., Goldsmith, E. C., & Baxter, S. C. (2008). Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Accounts of Chemical Research, 41(12), 1721–1730.

    Article  CAS  Google Scholar 

  • Nam, J., La, W. G., Hwang, S., Ha, Y. S., Park, N., Won, N., Jung, S., Bhang, S. H., Ma, Y. J., Cho, Y. M., & Jin, M. (2013). PH-responsive assembly of gold nanoparticles and “spatiotemporally concerted” drug release for synergistic cancer therapy. ACS Nano, 7(4), 3388–3402.

    Article  CAS  Google Scholar 

  • National Institutes of Health (US). (2007). Biological sciences curriculum study NIH curriculum supplement series. In Understanding Emerging and Re-emerging Infectious Diseases; National Institutes of Health (US). Available online: https://www.ncbi.nlm.nih.gov/books/NBK20370/. Retrieved April 20, 2017.

  • Nikoobakht, B., & El-Sayed, M. A. (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 15(10), 1957–1962.

    Article  CAS  Google Scholar 

  • Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E., & Tamarkin, L. (2004). Colloidal gold: A novel nanoparticle vector for tumor-directed drug delivery. Drug Delivery, 11(3), 169–183.

    Article  CAS  Google Scholar 

  • Pack, D. W., Hoffman, A. S., Pun, S., & Stayton, P. S. (2005). Design and development of polymers for gene delivery. Nature Reviews Drug Discovery, 4(7), 581–593.

    Article  CAS  Google Scholar 

  • Patra, C. R., Bhattacharya, R., Wang, E., Katarya, A., Lau, J. S., Dutta, S., Muders, M., Wang, S., Buhrow, S. A., Safgren, S. L., & Yaszemski, M. J. (2008). Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Research, 68(6), 1970–1978.

    Article  CAS  Google Scholar 

  • Pissuwan, D., Valenzuela, S. M., & Cortie, M. B. (2006). Therapeutic possibilities of plasmonically heated gold nanoparticles. TRENDS in Biotechnology, 24(2), 62–67.

    Article  CAS  Google Scholar 

  • Pokharkar, V., Bhumkar, D., Suresh, K., Shinde, Y., Gairola, S., & Jadhav, S. S. (2011). Gold nanoparticles as a potential carrier for transmucosal vaccine delivery. Journal of Biomedical Nanotechnology, 7(1), 57–59.

    Article  CAS  Google Scholar 

  • Polak, P., & Shefi, O. (2015). Nanometric agents in the service of neuroscience: manipulation of neuronal growth and activity using nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 11(6), 1467–1479.

    Google Scholar 

  • Prasad, B. L., Stoeva, S. I., Sorensen, C. M., & Klabunde, K. J. (2002). Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir, 18(20), 7515–7520.

    Article  CAS  Google Scholar 

  • Putnam, D. (2006). Polymers for gene delivery across length scales. Nature Materials, 5, 439–451.

    Article  CAS  Google Scholar 

  • Putzu, A., de Carvalho, C. M. P. D., de Almeida, J. P., Belletti, A., Cassina, T., Landoni, G., & Hajjar, L. A. (2018). Perioperative statin therapy in cardiac and non-cardiac surgery: A systematic review and meta-analysis of randomized controlled trials. Annals of Intensive Care, 8, 95.

    Article  Google Scholar 

  • Rai, A., Prabhune, A., & Perry, C. C. (2010). Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. Journal of Materials Chemistry, 20(32), 6789–6798.

    Article  CAS  Google Scholar 

  • Rietwyk, S., & Peer, D. (2017). Next-generation lipids in RNA interference therapeutics. ACS Nano, 11(8), 7572–7586.

    Article  CAS  Google Scholar 

  • Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K., Han, M. S., & Mirkin, C. A. (2006). Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 312(5776), 1027–1030.

    Article  CAS  Google Scholar 

  • Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112(5), 2739–2779.

    Article  CAS  Google Scholar 

  • Satnami, M. L., Chandraker, K., Vaishanav, S. K., & Nagwanshi, R. (2015). Interaction of thiolated amino acids and peptide onto the gold nanoparticle surface: Radical scavenging activity. Indian Journal of Chemistry Section, 54A(10), 1206–1214.

    Google Scholar 

  • Saylor, C., Dadachova, E., & Casadevall, A. (2009). Monoclonal antibody-based therapies for microbial diseases. Vaccine, 27, G38–G46.

    Article  CAS  Google Scholar 

  • Schroeder, A., Heller, D. A., Winslow, M. M., Dahlman, J. E., Pratt, G. W., Langer, R., Jacks, T., & Anderson, D. G. (2012). Treating metastatic cancer with nanotechnology. Nature Reviews Cancer, 12(1), 39–50.

    Article  CAS  Google Scholar 

  • Schäffler, M., Sousa, F., Wenk, A., Sitia, L., Hirn, S., Schleh, C., Haberl, N., Violatto, M., Canovi, M., Andreozzi, P., Salmona, M., Bigini, P., Kreyling, W. G., & Krol, S. (2014). Blood protein coating of nanoparticles as a potential tool for organ targeting. Biomaterials, 35, 3455–3466.

    Article  Google Scholar 

  • Scott, A. W., Garimella, V., Calabrese, C. M., & Mirkin, C. A. (2017). Universal Biotin–PEG-linked gold nanoparticle probes for the simultaneous detection of nucleic acids and proteins. Bioconjugate Chemistry, 28(1), 203–211.

    Article  CAS  Google Scholar 

  • Shah, M., Badwaik, V. D., & Dakshinamurthy, R. (2014b). Biological applications of gold nanoparticles. Journal of Nanoscience and Nanotechnology, 14(1), 344–362.

    Article  CAS  Google Scholar 

  • Shah, M., Badwaik, V., Kherde, Y., Waghwani, H. K., Modi, T., Aguilar, Z. P., Rodgers, H., Hamilton, W., Marutharaj, T., Webb, C., & Lawrenz, M. B. (2014a). Gold nanoparticles: Various methods of synthesis and antibacterial applications. Frontiers in Bioscience-Landmark, 19(8), 1320–1344.

    Article  Google Scholar 

  • Shao, J., Griffin, R. J., Galanzha, E. I., Kim, J. W., Koonce, N., Webber, J., Mustafa, T., Biris, A. S., Nedosekin, D. A., & Zharov, V. P. (2013). Photothermal nanodrugs: The potential of TNF-gold nanospheres for cancer theranostics. Scientific Reports, 3(1), 1293.

    Article  Google Scholar 

  • Siddiqi, K. S., & Husen, A. (2016). Engineered gold nanoparticles and plant adaptation potential. Nanoscale Research Letters, 11(400), 1–10. https://doi.org/10.1186/s11671-016-1607-2

    Article  CAS  Google Scholar 

  • Siddiqi, K. S., & Husen, A. (2017). Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. Journal of Trace Elements in Medicine and Biology, 40, 10–23. https://doi.org/10.1016/j.jtemb.2016.11.012

    Article  CAS  Google Scholar 

  • Sivaraman, S. K., Kumar, S., & Santhanam, V. (2011). Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method–the role of chloroauric acid. Journal of Colloid and Interface Science, 361(2), 543–547.

    Article  CAS  Google Scholar 

  • Sun, L., Liu, D., & Wang, Z. (2008). Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir, 24(18), 10293–10297.

    Article  CAS  Google Scholar 

  • Sun, Y., & Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298(5601), 2176–2179.

    Article  CAS  Google Scholar 

  • Verma, A., Simard, J. M., Worrall, J. W., & Rotello, V. M. (2004). Tunable reactivation of nanoparticle-inhibited β-galactosidase by glutathione at intracellular concentrations. Journal of American Chemical Society, 126(43), 13987–13991.

    Article  CAS  Google Scholar 

  • Wang, F., Wang, Y. C., Dou, S., Xiong, M. H., Sun, T. M., & Wang, J. (2011). Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 5(5), 3679–3692.

    Article  CAS  Google Scholar 

  • Waters, C. A., Mills, A. J., Johnson, K. A., & Schiffrin, D. J. (2003). Purification of dodecanethiol derivatized gold nanoparticles. Chemical Communications, 4, 540–541.

    Article  Google Scholar 

  • Xu, L., Liu, Y., Chen, Z., Li, W., Liu, Y., Wang, L., Liu, Y., Wu, X., Ji, Y., Zhao, Y., & Ma, L. (2012). Surface-engineered gold nanorods: Promising DNA vaccine adjuvant for HIV-1 treatment. Nano Letters, 12(4), 2003–2012.

    Article  CAS  Google Scholar 

  • Yafout, M., Ousaid, A., Khayati, Y., & El Otmani, I. S. (2021). Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Scientific African, 11, e00685.

    Article  CAS  Google Scholar 

  • Yang, Y. C., Chen, C. N., & Chi, L. L. (2016). Inventors; GNT Biotech and Medicals Corp, assignee. Transcranial burst electrostimulation apparatus and its applications. United States patent application US 14/800,997. 2016 Jan 21.

    Google Scholar 

  • Zamani, P., Fereydouni, N., Butler, A. E., Navashenaq, J. G., & Sahebkar, A. (2019). The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends in Cardiovascular Medicine, 29(6), 313–323.

    Article  CAS  Google Scholar 

  • Zare, D., Khoshnevisan, K., Barkhi, M., & Tahami, H. V. (2014). Fabrication of capped gold nanoparticles by using various amino acids. Journal of Experimental Nanoscience, 9(9), 957–965.

    Article  CAS  Google Scholar 

  • Zhan, Q., Qian, J., Li, X., & He, S. (2009). A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology, 21(5), 055704.

    Article  Google Scholar 

  • Zhang, X. D., Wu, D., Shen, X., Liu, P. X., & Fan, F. Y. (2015). The cellular uptake of gold nanoparticles in cancer cells is mediated by impaired autophagic flux rather than by the classic endocytic pathway. Nanoscale, 7(41), 17090–17103.

    Google Scholar 

  • Zhang, G., Yang, Z., Lu, W., Zhang, R., Huang, Q., Tian, M., Li, L., Liang, D., & Li, C. (2009). Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials, 30(10), 1928–1936.

    Article  CAS  Google Scholar 

  • Zhao, X., Huang, Q., & Jin, Y. (2015). Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation. Materials Science and Engineering, c: Materials for Biological Applications, 54, 142–149.

    Article  CAS  Google Scholar 

  • Zharov, V. P., Mercer, K. E., Galitovskaya, E. N., & Smeltzer, M. S. (2006). Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophysical Journal, 90, 619–662.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Chandra Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P.C., Sharma, N., Mishra, P., Rai, S., Verma, T. (2024). Role of Gold Nanoparticles for Targeted Drug Delivery. In: Bachheti, R.K., Bachheti, A., Husen, A. (eds) Metal and Metal-Oxide Based Nanomaterials. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-7673-7_12

Download citation

Publish with us

Policies and ethics