Skip to main content

Incremental Property Directed Reachability

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14308))

Included in the following conference series:

Abstract

Property Directed Reachability (PDR) is a widely used technique for formal verification of hardware and software systems. This paper presents an incremental version of PDR (IPDR), which enables the automatic verification of system instances of incremental complexity. The proposed algorithm leverages the concept of incremental SAT solvers to reuse verification results from previously verified system instances, thereby accelerating the verification process. The new algorithm supports both incremental constraining and relaxing; i.e., starting from an over-constrained instance that is gradually relaxed.

To validate the effectiveness of the proposed algorithm, we implemented IPDR and experimentally evaluate it on two different problem domains. First, we consider a circuit pebbling problem, where the number of pebbles is both constrained and relaxed. Second, we explore parallel program instances, progressively increasing the allowed number of interleavings. The experimental results demonstrate significant performance improvements compared to Z3’s PDR implementation SPACER. Experiments also show that the incremental approach succeeds in reusing a substantial amount of clauses between instances, for both the constraining and relaxing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Without loss of generality, we may assume that \(\overline{P}\) is a single state (i.e., a sink state).

  2. 2.

    This represents for instance the scenario when we find the minimum number of pebbles to successfully pebble a circuit by approximating the pebble count from above; reducing pebbles in each run until goal of pebbling the circuit is no longer possible.

  3. 3.

    This represents for instance the scenario when we find a bug after increasing the number of interleavings in a parallel program.

  4. 4.

    https://github.com/Majeux/pebbling-pdr.

References

  1. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_11

    Chapter  Google Scholar 

  2. Bennett, C.: Time/space trade-offs for reversible computation. SIAM 18, 766–776 (1989)

    Article  MathSciNet  Google Scholar 

  3. Beyer, D., Dangl, M.: Software verification with PDR: an implementation of the state of the art. In: TACAS 2020. LNCS, vol. 12078, pp. 3–21. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_1

    Chapter  Google Scholar 

  4. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 146–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-1_11

    Chapter  Google Scholar 

  5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

    Chapter  Google Scholar 

  6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. In: Handbook of Satisfiability, vol. 185, no. 99 (2009)

    Google Scholar 

  7. Biere, A., Jussila, T. (eds.) Hardware Model Checking Competition 2007 (HWMCC07). LNCS, vol. 10867. Springer, Heidelberg (2007)

    Google Scholar 

  8. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-guided abstraction-refinement (CTIGAR). In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 831–848. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_55

    Chapter  Google Scholar 

  9. Blankestijn, M., Laarman, A.: Incremental property directed reachability. arXiv preprint arXiv:2308.12162 (2023)

  10. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

    Chapter  Google Scholar 

  11. Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_1

    Chapter  Google Scholar 

  12. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of counterexamples to induction. In: FMCAD 2007, pp. 173–180. IEEE (2007)

    Google Scholar 

  13. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

    Article  Google Scholar 

  14. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10^{20}\) states and beyond. In: LICS, pp. 428–439 (1990)

    Google Scholar 

  15. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_23

    Chapter  Google Scholar 

  16. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order techniques. STTT 2, 279–287 (1999)

    Article  Google Scholar 

  17. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_15

    Chapter  Google Scholar 

  18. Clarke, E., Henzinger, T., Veith, H., Bloem, R.: Handbook of Model Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

    Book  Google Scholar 

  19. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, STOC 1971, pp. 151–158. ACM (1971)

    Google Scholar 

  20. Coudert, O., Madre, J.C.: A unified framework for the formal verification of sequential circuits. In: Kuehlmann, A. (ed.) The Best of ICCAD, pp. 39–50. Springer, Boston (2003). https://doi.org/10.1007/978-1-4615-0292-0_4

    Chapter  Google Scholar 

  21. de Bakker, J.W., Meertens, L.G.L.T.: On the completeness of the inductive assertion method. J. Comput. Syst. Sci. 11(3), 323–357 (1975)

    Article  MathSciNet  Google Scholar 

  22. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  23. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property directed reachability. In: FMCAD 2011, pp. 125–134 (2011)

    Google Scholar 

  24. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. ENTCS 89(4), 543–560 (2003)

    Google Scholar 

  25. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoret. Comput. Sci. 256(1–2), 63–92 (2001)

    Article  MathSciNet  Google Scholar 

  26. Floyd, R.: Assigning meanings to programs. In: Colburn, T.R., Fetzer, J.H., Rankin, T.L. (eds.) Program Verification, pp. 65–81. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1793-7_4

    Chapter  Google Scholar 

  27. Goel, A., Sakallah, K.: On symmetry and quantification: a new approach to verify distributed protocols. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 131–150. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76384-8_9

    Chapter  Google Scholar 

  28. Gribomont, E.P.: Atomicity refinement and trace reduction theorems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 311–322. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_79

    Chapter  Google Scholar 

  29. Grumberg, O., et al.: Proof-guided underapproximation-widening for multi-process systems. In: POPL, pp. 122–131. ACM (2005)

    Google Scholar 

  30. Günther, H., Laarman, A., Weissenbacher, G.: Vienna verification tool: IC3 for parallel software. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 954–957. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_69

    Chapter  Google Scholar 

  31. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In: 2013 Formal Methods in Computer-Aided Design, pp. 157–164 (2013)

    Google Scholar 

  32. Heule, M.: Schur number five. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  33. Heule, M., Kullmann, O.: The science of brute force. Commun. ACM 60(8), 70–79 (2017)

    Article  Google Scholar 

  34. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_15

    Chapter  Google Scholar 

  35. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_13

    Chapter  Google Scholar 

  36. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_2

    Chapter  Google Scholar 

  37. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-core emptiness checking of timed Büchi automata using inclusion abstraction. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_69

    Chapter  Google Scholar 

  38. Larsen, K., et al.: As cheap as possible: efficient cost-optimal reachability for priced timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 493–505. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_47

    Chapter  Google Scholar 

  39. Levin, L.A.: Universal sequential search problems. Problemy Peredachi Informatsii 9(3), 115–116 (1973)

    Google Scholar 

  40. Lingas, A.: A PSPACE complete problem related to a pebble game. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 300–321. Springer, Heidelberg (1978). https://doi.org/10.1007/3-540-08860-1_22

    Chapter  Google Scholar 

  41. Maslov, D.: Reversible Logic Synthesis Benchmarks Page. https://reversiblebenchmarks.github.io/. Accessed 24 July 2021

  42. McMillan, K.L.: Symbolic Model Checking. Springer, New York (1993). https://doi.org/10.1007/978-1-4615-3190-6

    Book  Google Scholar 

  43. Meuli, G., et al.: Reversible pebbling game for quantum memory management. In: DATE, pp. 288–291. IEEE (2019)

    Google Scholar 

  44. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of multithreaded programs. In: PLDI, pp. 446–455. ACM (2007)

    Google Scholar 

  45. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_19

    Chapter  Google Scholar 

  46. Peterson, G.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3), 115–116 (1981)

    Article  Google Scholar 

  47. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)

    Article  MathSciNet  Google Scholar 

  48. Quist, A.-J., Laarman, A.: Optimizing quantum space using spooky pebble games. In: Kutrib, M., Meyer, U. (eds.) Reversible Computation. LNCS, vol. 13960, pp. 134–149. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38100-3_10

    Chapter  Google Scholar 

  49. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_9

    Chapter  Google Scholar 

  50. Silva, J.P.M., Sakallah, K.A.: Grasp – a new search algorithm for satisfiability. In: CAD, pp. 220–227 (1997)

    Google Scholar 

  51. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28

    Chapter  Google Scholar 

  52. Welp, T., Kuehlmann, A.: QF_BV model checking with property directed reachability. In: DATE, pp. 791–796. EDA Consortium (2013)

    Google Scholar 

  53. Wieringa, S.: On incremental satisfiability and bounded model checking. In: CEUR Workshop Proceedings, vol. 832, pp. 13–21 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons Laarman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blankestijn, M., Laarman, A. (2023). Incremental Property Directed Reachability. In: Li, Y., Tahar, S. (eds) Formal Methods and Software Engineering. ICFEM 2023. Lecture Notes in Computer Science, vol 14308. Springer, Singapore. https://doi.org/10.1007/978-981-99-7584-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7584-6_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7583-9

  • Online ISBN: 978-981-99-7584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics