Skip to main content

Host Plant Resistance to Insect Pests in Wheat

  • Chapter
  • First Online:
Plant Resistance to Insects in Major Field Crops

Abstract

Host plant resistance offers an excellent solution to pest problems, which reduces pesticide usage and environmental pollution. Host plant resistance to insect pests in wheat has enabled the management of major insect pests including Mayetiola destructor, Cephus cinctus, Diuraphis noxia, Schizaphis graminum, and Rhopalosiphum padi. The major sources of genetic diversity for pest resistance in wheat have been landraces cultivars of wheat and wild relatives. Several resistance genes have been identified and are incorporated into cultivated wheat (especially in Triticum aestivum). Nevertheless, scanty information is available about resistance to other economically important pests such as Sitodiplosis mosellana and Oulema melanopus. A coherent program to incorporate resistant varieties in the integrated pest management (IPM) of wheat pests is needed to better protect the crop and improve crop yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas MST (2018) Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt J Biol Pest Control 28:52. https://doi.org/10.1186/s41938-018-0051-2

    Article  Google Scholar 

  • Achhami BB, Reddy GVP, Sherman JD, Peterson RKD, Weaver DK (2020) Antixenosis, antibiosis, and potential yield compensatory response in barley cultivars exposed to wheat stem sawfly (Hymenoptera: Cephidae) under field conditions. J Insect Sci 20:9. https://doi.org/10.1093/jisesa/ieaa091

    Article  PubMed  PubMed Central  Google Scholar 

  • Aljbory Z, Aikins MJ, Park Y, Reeck GR, Chen M (2020) Differential localization of Hessian fly candidate effectors in resistant and susceptible wheat plants. Plant Direct 4:e00246. https://doi.org/10.1002/pld3.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altpeter F, Diaz I, McAuslane H, Gaddour K, Carbonero P, Vasil IK (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breeding 5:53–63

    Article  CAS  Google Scholar 

  • Archer TL, Peairs FB, Pike KS, Johnson GD, Kroening M (1998) Economic injury levels for the Russian wheat aphid (Homoptera: Aphididae) on winter wheat in several climate zones. J Econ Entomol 91:741–747

    Article  Google Scholar 

  • Arif MA, Waheed MQ, Lohwasser U, Shokat S, Alqudah AM, Volmar C, Borner A (2022) Genetic insight into the insect resistance in bread wheat exploiting the untapped natural diversity. Front Genet 13. https://doi.org/10.3389/fgene.2022.828905

  • Armstrong JS, McNew RW (1976) Resistance in wheat to the greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae): mechanism and inheritance. Crop Sci 16:828–830

    Google Scholar 

  • Berzonsky WA, Ding H, Haley SD, Harris MO, Lamb RJ et al (2003) Breeding wheat for resistance to insects. Plant Breeding Rev 22:221–296. https://doi.org/10.1002/9780470650202.ch5

    Article  Google Scholar 

  • Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW (2010) Compendium of wheat diseases and pests, 3rd edn. The American Phytopathological Society, Minnesota

    Book  Google Scholar 

  • Buntin GD, Flanders KL, Slaughterand RW, Delamar ZD (2004) Damage loss assessment and control of the cereal leaf beetle (Coleoptera: Chrysomelidae) in winter wheat. J Econ Entomol 97:374–382

    Article  CAS  PubMed  Google Scholar 

  • Cai QN, Ma XM, Zhao X, Cao YZ, Yang XQ (2009) Effects of host plant resistance on insect pests and its parasitoid: a case study of wheat-aphid–parasitoid system. Biol Control 49:134–138

    Article  Google Scholar 

  • Cao HH, Pan MZ, Liu HR, Wang SH, Liu TX (2015) Antibiosis and tolerance but not antixenosis to the grain aphid, Sitobion avenae (Hemiptera: Aphididae), are essential mechanisms of resistance in a wheat cultivar. Bull Entomol Res 105:448–455

    Article  CAS  PubMed  Google Scholar 

  • Crespo-Herrera L, Singh RP, Reynolds M, Huerta-Espino J (2019a) Genetics of greenbug resistance in synthetic hexaploid wheat derived germplasm. Front Plant Sci 10:782. https://doi.org/10.3389/fpls.2019.00782

    Article  PubMed  PubMed Central  Google Scholar 

  • Crespo-Herrera LA, Singh RP, Sabraoui A, El-Bouhssini M (2019b) Resistance to insect pests in wheat—rye and Aegilops speltoides Tausch translocation and substitution lines. Euphytica 215:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37:1–7

    Google Scholar 

  • Domingo JL (2016) Safety assessment of GM plants: an updated review of the scientific literature. Food Chem Toxicol 95:12–18

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Hou Q, Liu G, Pang X, Niu Z, Wang X, Zhang Y, Li B, Liang R (2018) Expression of Pinellia pedatisecta lectin gene in transgenic wheat enhances resistance to wheat aphids. Molecules 23:748

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Bouhssini M, Ogbonnaya FC, Chen M, Lhaloui S, Rihawi F, Dabbous A (2013) Sources of resistance in primary synthetic hexaploid wheat (Triticum aestivum L.) to insect pests: Hessian fly, Russian wheat aphid and Sunn pest in the Fertile Crescent. Genet Resour Crop Evol 60:621–627

    Article  CAS  Google Scholar 

  • El-Bouhssini M, Amri A, Lhaloui S (2021) Plant resistance to cereal and food legume insect pests in North Africa, West and Central Asia: challenges and achievements. Curr Opin Insect Sci 45:35–41

    Article  PubMed  Google Scholar 

  • Elek H, Werner P, Smart L, Gordon-Weeks R, Nádasy M, Pickett J (2009) Aphid resistance in wheat varieties. Commun Agric Appl Biol Sci 74:233–241

    PubMed  Google Scholar 

  • El-Wakeil NE, Volkmar C, Sallam AA (2010) Jasmonic acid induces resistance to economically important insect pests in winter wheat. Pest Manag Sci 66:549–554

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014) Food and agricultural organization of United Nations, Food and Agriculture Organization, Statistics Division (FAOSTAT). FAOSTAT

    Google Scholar 

  • FAO (2022) Food and agricultural organization of United Nations FAO’s Statistical Yearbook for 2022. https://www.fao.org/newsroom/detail/fao-s-statistical-yearbook-for-2022-goeslive/en#:~:text=Sugarcane%20is%20the%20world's%20largest,factor%20of%203.7%20since%202000. Accessed Mar 2023

  • Fedak G, Armstrong KC (1980) Production of trigeneric (barley × wheat) × rye hybrids. Theor Appl Genet 56:221–224

    Article  CAS  PubMed  Google Scholar 

  • Garcia M, Martinez M, Isabel D, Santamaria ME (2021) The price of the induced defense against pests: a meta-analysis. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.615122

  • Gebretsadik KG, Zhang Y, Chen J (2022) Screening and evaluation for antixenosis resistance in wheat accessions and varieties to grain aphid, Sitobion miscanthi (Takahashi) (Hemiptera: Aphididae). Plants 11:1094. https://doi.org/10.3390/plants11081094

    Article  PubMed  PubMed Central  Google Scholar 

  • Herbert DA, Van Duyn JW Jr, Bryan MD, Karren JB (2007) Cereal leaf beetle. In: Buntin GD, Pike KS, Weiss MJ, Webster JA (eds) Handbook of small grain insects. Entomological Society of America, Lanham, MD, p 120

    Google Scholar 

  • Kamran A, Asif M, Hussain SB, Ahmad M, Hirani A (2013) Major insects of wheat: biology and mitigation strategies. Crop Prod. Accessed on 17 Feb 2023. https://doi.org/10.5772/55799

  • Kassa MT, Haas S, Schliephake E, Lewis C, You FM, Pozniak CJ, Krämer I et al (2016) A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theor Appl Genet 129:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Kher SV, Dosdall LM, Cárcamo HA (2011) The cereal leaf beetle: biology, distribution and prospects for control. Prairie Soils Crop 4:32–41

    Google Scholar 

  • Kisten L, Tolmay VL, Mathew I, Sydenham SL, Venter E (2020) Genome-wide association analysis of Russian wheat aphid (Diuraphis noxia) resistance in Dn4 derived wheat lines evaluated in South Africa. PLoS One 28(15):e0244455

    Article  Google Scholar 

  • Koch A, Wassenegger M (2021) Host-induced gene silencing—mechanisms and applications. New Phytol 231:54–59

    Article  CAS  PubMed  Google Scholar 

  • Li C, Chen M, Chao S, Yu J, Bai G (2013) Identification of a novel gene, H34, in wheat using recombinant inbred lines and single nucleotide polymorphism markers. Theor Appl Genet 126:2065–2071

    Article  CAS  PubMed  Google Scholar 

  • Luo K, He D, Guo J, Li G, Li B, Chen X (2023) Molecular advances in breeding for durable resistance against pests and diseases in wheat: opportunities and challenges. Agronomy 13:628. https://doi.org/10.3390/agronomy13030628

    Article  CAS  Google Scholar 

  • McCauley D (2020) A Pith(y) solution to a growing problem. CSA News 65:6–11

    Google Scholar 

  • Mondal S, Rutkoski JE, Velu G, Singh PK, Guzmán C, Bhavani S, Lan C, He X, Singh RP (2016) Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00991

  • Morrill W, Weiss M (2007) Wheat stem sawfly. In: Buntin G, Pike K, Weiss M, Webster J (eds) Handbook of small grain insects. Entomological Society of America, p 120

    Google Scholar 

  • Moudrý J, Konvalina P, Stehno Z, Capouchová I, Moudrý J Jr (2011) Ancient wheat species can extend biodiversity of cultivated crops. Sci Res Essays 6:4273–4280

    Article  Google Scholar 

  • Nasrollahi S, Badakhshan H, Sadeghi A (2019) Analyzing Sunn pest resistance in bread wheat genotypes using phenotypic characteristics and molecular markers. Physiol Mol Biol Plants 25:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsen KT, N’Diaye A, MacLachlan PR, Clarke JM, Ruan Y, Cuthbert RD, Knox RE, Wiebe K, Cory AT, Walkowiak S et al (2017) High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat. PLoS One 12:e0175285

    Article  PubMed  PubMed Central  Google Scholar 

  • Onstad DW, Knolhoff L (2014) Arthropod resistance to crops. In: Onstad DW (ed) Insect resistance management. Academic Press, Oxford, pp 293–326

    Chapter  Google Scholar 

  • Peirce ES, Cockrell DM, Mason E, Haley S, Peairs F, Nachappa P (2022) Solid stems and beyond: challenges and future directions of resistance to wheat stem sawfly (Hymenoptera: Cephidae). J Integr Pest Manag 13:29. https://doi.org/10.1093/jipm/pmac023

    Article  Google Scholar 

  • Porter DR, Webster JA (1976) Resistance in wheat to the Hessian fly. Crop Sci 16:227–230

    Google Scholar 

  • Porter DR, Webster JA (1982) Mechanisms of Hessian fly resistance in wheat. Entomol Exp Appl 31:335–343

    Google Scholar 

  • Porter DR, Webster JA (2000) Russian wheat aphid-induced protein alterations in spring wheat. Euphytica 111:199–203

    Article  CAS  Google Scholar 

  • Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J (2019) Host-induced gene silencing: a powerful strategy to control diseases of wheat and barley. Int J Mol Sci 20:1

    Article  Google Scholar 

  • Royer TA, Pendleton BB, Elliott NC, Giles KL (2015) Greenbug (Hemiptera: Aphididae) biology, ecology, and management in wheat and sorghum. J Integr Pest Manag 6:19. https://doi.org/10.1093/jipm/pmv018

    Article  Google Scholar 

  • Sardesai N, Nemacheck JA, Subramanyan S, Williams CE (2005) Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor Appl Genet 111:1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Sarthi G, Singh AK, Sharma V (2022) Genetic basis of arthropod resistance in cereals. In: Plant defense against insect pests. Springer, Cham, pp 173–207

    Google Scholar 

  • Shanower TG, Hoelmer KA (2004) Biological control of wheat stem sawflies: past and future. J Agric Urban Entomol 21:197–221

    Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security 5:291–317

    Article  Google Scholar 

  • Smith CM (2005) Plant resistance to arthropods-molecular and conventional approaches. Springer, Dordrecht, p 423

    Book  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Harris MK (1989) Registration of KSU29, KSU30, and KSU31 wheat germplasms resistant to greenbug and Russian wheat aphid. Crop Sci 29:248–248

    Google Scholar 

  • Subramanyam S, Sardesai N, Puthoff DP, Meyer JM, Nemacheck JA, Gonzalo M, Williams CE (2006) Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci 170:90–103

    Article  CAS  Google Scholar 

  • Tadesse W, Sanchez-Garcia M, Tawkaz S, El-Hanafi S, Skaf P, El-Baouchi A, Eddakir K, El-Shamaa K, Thabet S, Gizaw AS, Baum M (2019) Wheat breeding handbook at ICARDA. https://hdl.handle.net/20.500.11766/10723

  • Tadesse W, Harris M, Crespo-Herrera LA, Mori BA, Kehel Z, El-Bouhssini M (2022a) Insect resistance. In: Reynolds MP, Braun H (eds) Wheat improvement-food security in a changing climate-CIMMYT. Springer, pp 361–378

    Chapter  Google Scholar 

  • Tadesse W, El-Fakhouri K, Imseg I, Rachdad FE, El-Gataa Z, El-Bouhssini M (2022b) Wheat breeding for hessian fly resistance at ICARDA. Crop J 10:1528–1535

    Article  Google Scholar 

  • Tan CT, Yu H, Yang Y, Xu X, Chen M, Rudd JC, Xue Q, Ibrahim AMH, Garza L, Wang S, Sorrells ME, Liu S (2017) Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor Appl Genet 130:1867–1884

    Article  CAS  PubMed  Google Scholar 

  • Tan MK, El-Bouhssini M, Wildman O, Tadesse W, Chambers G, Luo S, Emebiri L (2018) Development of SNP assays for hessian fly response genes, Hfr-1 and Hfr-2, for marker-assisted selection in wheat breeding. BMC Genet 19:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G, Liu X, Chen GH, Witworth RJ, Chen MS (2018) Increasing temperature reduces wheat resistance mediated by major resistance genes to Mayetiola destructor (Diptera: Cecidomyiidae). J Econ Entomol 111:1433–1438

    Article  PubMed  Google Scholar 

  • Van Emden HF (2017) Host-plant resistance. In: van Emden HF, Harrington R (eds) Aphids as crop pests, 2nd edn. CABI, Boston, MA, pp 515–532

    Chapter  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    Article  CAS  PubMed  Google Scholar 

  • Würschum T, Leiser WL, Langer SM, Tucker MR, Miedaner T (2020) Genetic architecture of cereal leaf beetle resistance in wheat. Plants 9:1117. https://doi.org/10.3390/plants9091117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Li G, Carver BF, Puterka G (2020) Identification of wheat germplasm resistant to major Russian wheat aphid biotypes in the United States. Crop Sci 60:1428–1435. https://doi.org/10.1002/csc2.20041

    Article  CAS  Google Scholar 

  • Zanganeh L, Madadi H, Allahyari H (2015) Demographic parameters of Diuraphis noxia (Hemiptera: Aphididae) and Hippodamia variegata (Coleoptera: Coccinellidae) recorded in the context of D. noxia infesting resistant and susceptible cultivars of wheat. Eur J Entomol 112:453–459

    Article  Google Scholar 

  • Zhang M, Wang H, Yi Y, Ding J, Zhu M, Li C, Guo W, Feng C, Zhu X (2017) Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.). PLoS One 12(11):e0187543

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li H, Zhong X, Tian J, Segers A, Xia L, Francis F (2022) Silencing an aphid-specific gene SmDSR33 for aphid control through plant-mediated RNAi in wheat. Front Plant Sci 13:1100394

    Article  PubMed  Google Scholar 

  • Zhao C, Escalante LN, Chen H, Benatti TR, Qu J, Chellapilla S (2015) A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr Biol 25:613–620

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Qian W, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6:e1000844

    Article  PubMed  PubMed Central  Google Scholar 

  • Zukoff A, McCornack BP, Whitworth RJ (2023) Wheat insect pest management 2023. Kansas State University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anamika Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Mendu, V., Reddy, G.V.P. (2024). Host Plant Resistance to Insect Pests in Wheat. In: Kumar, S., Furlong, M. (eds) Plant Resistance to Insects in Major Field Crops. Springer, Singapore. https://doi.org/10.1007/978-981-99-7520-4_5

Download citation

Publish with us

Policies and ethics