Skip to main content

Different Generations of Genetically Modified Crops for Insect Resistance

  • Chapter
  • First Online:
Plant Resistance to Insects in Major Field Crops

Abstract

Crops are exposed to a variety of insect pests throughout their lifetime. Insect pests cause significant damage to crop plants by feeding on their tissues or sap. Besides the conventional methods which are based on using chemicals, the genetic transformation of plants with insecticidal toxin genes such as Bt has been widely applied to control insect pests. In addition to Bt genes, other toxin genes from different sources were also transferred to plants. Transgenic plants have been on the market for over two decades and have had remarkable achievements so far. However, current restrictions on these products, as well as public concern make scientists explore new approaches. The advent of RNA interference technology and later the CRISPR/Cas genome editing tool has opened up a promising new avenue in the development of next-generation biotech crops. These new approaches allow scientists to introduce new plant genotypes resistant to pests and diseases without transferring toxin genes, and all it takes is to edit target regions in the genome or apply modifications to the host transcriptome content. In this chapter, we will review different generations of biotech crops developed for insect resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mahon R, Moar WJ, Higgins TJV (2010) Expression of a sequence-modified cry 2Aa gene for resistance to Helicoverpaarmigera in chickpea (Cicer arietinum L.). Plant Sci 178(3):333–339

    Article  CAS  Google Scholar 

  • Adang MJ, Brody MS, Cardineau G, Eagan N, Roush RT, Shewmaker CK, McBride KE (1993) The reconstruction and expression of a bacillus thuringiensiscry IIIA gene in protoplasts and potato plants. Plant Mol Biol 21(6):1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Agrawal N, Sachdev B, Rodrigues J, Sree KS, Bhatnagar RK (2013) Development associated profiling of chitinase and micro RNA of Helicoverpa armigera identified chitinase repressive micro RNA. Sci Rep 3(1):1–6

    Article  Google Scholar 

  • Amitai G, Sorek R (2016) CRISPR–Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 14(2):67–76

    Article  CAS  PubMed  Google Scholar 

  • Anayol, E., Bakhsh, A., Karakoç, Ö.C., Onarıcı, S., Köm, D., Aasim, M., ` and Özcan, S. (2016). Towards better insect management strategy: restriction of insecticidal gene expression to biting sites in transgenic cotton. Plant Biotechnol Rep 10:83–94

    Article  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Bakhsh A, Khabbazi SD, Baloch FS, Demirel U, Çalişkan ME, Hatipoğlu R, Özkan H (2015) Insect-resistant transgenic crops: retrospect and challenges. Turkish J Agric Forestr 39(4):531–548

    Article  CAS  Google Scholar 

  • Bakhsh A, Anayol E, Khabbazi SD, Karakoç ÖC, Sancak C, Özcan S (2016) Development of insect-resistant cotton lines with targeted expression of insecticidal gene. Arch Biol Sci 68(4):773–780

    Article  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Barton KE, Boege K (2017) Future directions in the ontogeny of plant defence: understanding the evolutionary causes and consequences. Ecol Lett 20(4):403–411

    Article  PubMed  Google Scholar 

  • Bashir K, Husnain T, Fatima T, Riaz N, Makhdoom R, Riazuddin S (2005) Novel indica basmati line (B-370) expressing two unrelated genes of bacillus thuringiensis is highly resistant to two lepidopteran insects in the field. Crop Prot 24(10):870–879

    Article  CAS  Google Scholar 

  • Baum JA, Roberts JK (2014) Progress towards RNAi-mediated insect pest management. In: Advances in insect physiology, vol 47. Academic Press, pp 249–295

    Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25(11):1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Benowitz KM, Allan CW, Degain BA, Li X, Fabrick JA, Tabashnik BE, Matzkin LM (2022) Novel genetic basis of resistance to Bt toxin cry 1Ac in Helicoverpa zea. Genetics 221(1):iyac 037

    Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    Article  CAS  PubMed  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  CAS  PubMed  Google Scholar 

  • Bisht DS, Bhatia V, Bhattacharya R (2019) Improving plant-resistance to insect-pests and pathogens: the new opportunities through targeted genome editing. In: Seminars in Cell & Developmental Biology, vol 96. Academic Press, pp 65–76

    Google Scholar 

  • Boddupally D, Tamirisa S, Gundra SR, Vudem DR, Khareedu VR (2018) Expression of hybrid fusion protein (cry 1Ac: ASAL) in transgenic rice plants imparts resistance against multiple insect pests. Sci Rep 8(1):8458

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosher JM, Labouesse M (2000) RNA interference: genetic wand and genetic watchdog. Nat Cell Biol 2(2):E31–E36

    Article  CAS  PubMed  Google Scholar 

  • Calles-Torrez V, Knodel JJ, Boetel MA, French BW, Fuller BW, Ransom JK (2019) Field-evolved resistance of northern and western corn rootworm (Coleoptera: Chrysomelidae) populations to corn hybrids expressing single and pyramided cry 3Bb1 and cry 34/35Ab1 Bt proteins in North Dakota. J Econ Entomol 112(4):1875–1886

    Article  PubMed  Google Scholar 

  • Chae H, Wen Z, Hootman T, Himes J, Duan Q, McMath J, Bramlett M (2022) eCry1Gb. 1Ig, A novel chimeric cry protein with high efficacy against multiple fall armyworm (Spodoptera frugiperda) strains resistant to different GM traits. Toxins 14(12):852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18:529–544

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty M, Reddy PS, Mustafa G, Rajesh G, Narasu VL, Udayasuriyan V, Rana D (2016) Transgenic rice expressing the cry 2AX1 gene confers resistance to multiple lepidopteran pests. Transgenic Res 25:665–678

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar K, Reddy GM, Singh J, Vani K, Vijayalakshmi M, Kaul T, Reddy MK (2014) Development of transgenic rice harbouring mutated rice 5-enolpyruvylshikimate 3-phosphate synthase (Os-mEPSPS) and Allium sativum leaf agglutinin (ASAL) genes conferring tolerance to herbicides and sap-sucking insects. Plant Mol Biol Report 32:1146–1157

    Article  CAS  Google Scholar 

  • Cheng J, Bolyard MG, Saxena RC, Sticklen MB (1992) Production of insect resistant potato by genetic transformation with a δ-endotoxin gene from bacillus thuringiensis var. kurstaki. Plant Sci 81(1):83–91

    Article  CAS  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cryIA (b) and cryIA (c) genes are highly toxic to striped stem borer and yellow stem borer. PNAS 95(6):2767–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf ESCHERICHIA, Van Rie J, Lereclus D, Dean D (1998) Revision of the nomenclature for the bacillus thuringiensispesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):807–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curry D, Browing H, Davis P, Ferguson I, Hutton D, Julius D, Wynne G (2002) Farming and food: a sustainable future. In: Report of the policy commission on the future of farming and food. Defra, London

    Google Scholar 

  • Czapla TH, Lang BA (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 83(6):2480–2485

    Article  Google Scholar 

  • Dang W, Wei ZM (2007) Efficient agrobacterium-mediated transformation of soybean. J Mol Cell Biol 40(3):185–195

    CAS  Google Scholar 

  • Davila Olivas NH, Frago E, Thoen MP, Kloth KJ, Becker FF, van Loon JJ, Dicke M (2017) Natural variation in life history strategy of Arabidopsis thaliana determines stress responses to drought and insects of different feeding guilds. Mol Ecol 26(11):2959–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deist BR, Rausch MA, Fernandez-Luna MT, Adang MJ, Bonning BC (2014) Bt toxin modification for enhanced efficacy. Toxins 6(10):3005–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Lelio I, Barra E, Coppola M, Corrado G, Rao R, Caccia S (2022) Transgenic plants expressing immunosuppressive dsRNA improve entomopathogen efficacy against Spodopteralittoralis larvae. J Pest Sci:1–16

    Google Scholar 

  • Dinh ST, Baldwin IT, Galis I (2013) The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants. Plant Physiol 162(4):2106–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2018) Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol 69:637–660

    Article  CAS  PubMed  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    Article  CAS  PubMed  Google Scholar 

  • Eisemann CH, Donaldson RA, Pearson RD, Cadogan LC, Vuocolo T, Tellam RL (1994) Larvicidal activity of lectins on Luciliacuprina: mechanism of action. Entomol Exp Appl 72(1):1–10

    Article  CAS  Google Scholar 

  • Erb M, Reymond P (2019) Molecular interactions between plants and insect herbivores. Annu Rev Plant Biol 70:527–557

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferré J, Escriche B, Bel Y, andvan Rie, J. (1995) Biochemistry and genetics of insect resistance to bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiol Lett 132(1–2):1–7

    Article  Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto KO (1993) Insect resistant rice generated by introduction of a modified δ-endotoxin gene of bacillus thuringiensis. Biotechnology 11(10):1151–1155

    CAS  PubMed  Google Scholar 

  • Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong HL, Shimamoto K (2010) Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem 285(15):11308–11313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6(7):e22629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatehouse AM, Hilder VA, Powell K, Boulter D, Gatehouse JA (1992) Potential of plant-derived genes in the genetic manipulation of crops for insect resistance. In proceedings of the 8th international symposium on insect-plant relationships. Springer, Netherlands, pp 221–234

    Google Scholar 

  • Gatehouse AM, Davison GM, Stewart JN, Gatehouse LN, Kumar A, Geoghegan IE, Gatehouse JA (1999) Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breed 5:153–165

    Article  CAS  Google Scholar 

  • Glander S, He F, Schmitz G, Witten A, Telschow A, de Meaux J (2018) Assortment of flowering time and immunity alleles in natural Arabidopsis thaliana populations suggests immunity and vegetative lifespan strategies coevolve. Gen Biol Evol 10(9):2278–2291

    Article  CAS  Google Scholar 

  • Godfrey J (2000) Do genetically modified foods affect human health? Lancet 355(9201):414

    Article  CAS  PubMed  Google Scholar 

  • Gostimskaya I (2022) CRISPR–Cas9: A history of its discovery and ethical considerations of its use in genome editing. Biochem Mosc 87(8):777–788

    Article  CAS  Google Scholar 

  • Halfhill MD, Richards HA, Mabon SA, Stewart CN (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor Appl Genet 103:659–667

    Article  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs–a kinase for every Ca2+ signal? Trends Plant Sci 5(4):154–159

    Article  CAS  PubMed  Google Scholar 

  • Head GP, Carroll MW, Evans SP, Rule DM, Willse AR, Clark TL, Meinke LJ (2017) Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag Sci 73(9):1883–1899

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 1(1):31–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2010) Agrobacterium-mediated transformation in chickpea (Cicer arietinum L.) with an insecticidal protein gene: optimisation of different factors. Physiol Mol Biol Plants 16:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ISAAA (2019) Global status of commercialized biotech/GM crops in 2019: biotech crops drive socio-economic development and sustainable environment in the new frontier. In: ISAAA brief no, 55. Ithaca, NY, ISAAA

    Google Scholar 

  • Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Wakasa K (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. The Plant J 54(3):481–495

    Article  CAS  PubMed  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs JM, Takla MF, Docherty LC, Frater CM, Markwick NP, Meiyalaghan S, Conner AJ (2009) Potato transformation with modified nucleotide sequences of the cry 9Aa2 gene improves resistance to potato tuber moth. Potato Res 52:367–378

    Article  CAS  Google Scholar 

  • Je YH, Chung YS, Ngo XB (2022) Convergence of Bar and Cry1Ac mutant genes in soybean confers synergistic resistance to herbicide and lepidopteran insects. Key Advances and Future Perspectives, Inducing Plant Resistance Against Insects Using Exogenous Bioactive Chemicals

    Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188–e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C, Arimura GI (2010) Regulation of Arabidopsis defense responses against Spodopteralittoralis by CPK-mediated calcium signaling. BMC Plant Biol 10:1–10

    Article  Google Scholar 

  • Kawamoto N, Endo M, andAraki, T. (2015) Expression of a kinase-dead form of CPK33 involved in florigen complex formation causes delayed flowering. Plant Signal Behav 10(12):e1086856

    Article  PubMed  PubMed Central  Google Scholar 

  • Khabbazi SD, Bakhsh A, Sancak C, Özcan S (2016) Molecular characterization of snowdrop lectin (GNA) and its comparison with reported lectin sequences of Amaryllidaceae. Czech J Genet Plant Breed 52(3):94–100

    Article  CAS  Google Scholar 

  • Khabbazi SD, Khabbazi AD, Özcan SF, Bakhsh A, Başalma D, Özcan S (2018) Expression of GNA and biting site-restricted cry1Ac in cotton; an efficient attribution to insect pest management strategies. Plant Biotechnol Rep 12:273–282

    Article  Google Scholar 

  • Khabbazi SD, Khabbazi AD, Cevik V, Ergül A (2020) Genetic engineering of horticultural crops contributes to the improvement of crop nutritional quality and shelf life. In: Transgenic Technology Based Value Addition in Plant Biotechnology, pp 247–272

    Chapter  Google Scholar 

  • Khabbazi SD, Khabbazi AD, Cevik V, Ergül A (2021) CRISPR/Cas9 system, an efficient approach to genome editing of plants for crop improvement. In: RNA-Based Technologies for Functional Genomics in Plants, pp 369–391

    Chapter  Google Scholar 

  • Khan GA, Bakhsh A, Riazuddin S, Husnain T (2011) Introduction of cry1Ab gene into cotton (Gossypiumhirsutum) enhances resistance against lepidopteran pest (Helicoverpaarmigera). Span J Agric Res 9(1):296–302

    Article  Google Scholar 

  • Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nature Rev Genet 8(3):173–184

    Article  CAS  PubMed  Google Scholar 

  • Klausner A (1984) Microbial insect control: using bugs to kill bugs. Biotechnology 2(5):408–419

    Google Scholar 

  • Koul B, Srivastava S, Sanyal I, Tripathi B, Sharma V, Amla DV (2014) Transgenic tomato line expressing modified bacillus thuringiensis cry1Ab gene showing complete resistance to two lepidopteran pests. Springer Plus 3(1):1–13

    Article  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from bacillus thuringiensis. Biotechnology 11(2):194–200

    CAS  Google Scholar 

  • Kumar H, Kumar V (2004) Tomato expressing Cry1A (b) insecticidal protein from bacillus thuringiensis protected against tomato fruit borer, Helicoverpaarmigera (Hübner)(Lepidoptera: Noctuidae) damage in the laboratory, greenhouse and field. Crop Prot 23(2):135–139

    Article  CAS  Google Scholar 

  • Kumar P, Pandit SS, Steppuhn A, Baldwin IT (2014) Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. PNAS 111(4):1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Stanford W, De Solis C, Abraham ND, Dao TMJ, Thaseen S, Ploski JE (2018) The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and Cre-recombinase. Front Mol Neurosci:413

    Google Scholar 

  • Li C, Luo C, Zhou Z, Wang R, Ling F, Xiao L, andChen, H. (2017) Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation. BMC Plant Biol 17(1):1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Hu D, Cai L, Wang H, Liu X, Du H, andWang, H. (2022) Calcium-dependent protein KINASE38 regulates flowering time and common cutworm resistance in soybean. Plant Physiol 190(1):480–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Du H, Ding X, Zhou Y, Xie P, Wu J (2017) Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pest Manag Sci 73(12):2559–2568

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Han S, Yang S, Chen Z, Yin Y, Xi J, Hao D (2022) Engineered chimeric insecticidal crystalline protein improves resistance to lepidopteran insects in rice (Oryza sativa L.) and maize (Zea mays L.). Sci Rep 12(1):12529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu HP, Luo T, Fu HW, Wang L, Tan YY, Huang JZ, Shu QY (2018) Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nat Plants 4(6):338–344

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68(22–24):2946–2959

    Article  CAS  PubMed  Google Scholar 

  • Majeed A (2005) Expression of proteinase inhibitor gene in cotton. University of the Punjab, Lahore, Pakistan

    Google Scholar 

  • Mamta RKRK, Rajam MV (2016) Targeting chitinase gene of Helicoverpaarmigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol Biol 90:281–292

    Article  CAS  PubMed  Google Scholar 

  • Mandaokar AD, Goyal RK, Shukla A, Bisaria S, Bhalla R, Reddy VS, Kumar PA (2000) Transgenic tomato plants resistant to fruit borer (HelicoverpaarmigeraHubner). Crop Prot 19(5):307–312

    Article  CAS  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25(11):1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673

    Article  CAS  PubMed  Google Scholar 

  • McPherson SA, Perlak FJ, Fuchs RL, Marrone PG, Lavrik PB, Fischhoff DA (1988) Characterization of the coleopteran–specific protein gene of bacillus thuringiensis var. tenebrionis. Biotechnology 6(1):61–66

    CAS  Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpaarmigera. Euphytica 182:87–102

    Article  CAS  Google Scholar 

  • Meiyalaghan S, Jacobs JME, Butler RC, Wratten SD, Conner AJ (2006) Transgenic potato lines expressing cry 1Ba1 or cry 1Ca5 genes are resistant to potato tuber moth. Potato Res 49:203–216

    Article  CAS  Google Scholar 

  • Mi X, Ji X, Yang J, Liang L, Si H, Wu J, Wang D (2015) Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle. Comp Ren Biol 338(7):443–450

    Article  Google Scholar 

  • Mittal P, Yadav R, Devi R, Tiwari A, Upadhye SP, Gosal SS (2011) Wondrous RNAi-gene silencing. Biotechnology 10(1):41–50

    Article  CAS  Google Scholar 

  • Morán R, Garcıa R, López A, Zaldúa Z, Mena J, Garcıa M, Pimentel E (1998) Transgenic sweet potato plants carrying the delta-endotoxin gene from bacillus thuringiensis var. tenebrionis. Plant Sci 139(2):175–184

    Article  Google Scholar 

  • Newell CA, Lowe JM, Merryweather A, Rooke LM, Hamilton WDO (1995) Transformation of sweet potato (Ipomoea batatas (L.) lam.) with agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci 107(2):215–227

    Article  CAS  Google Scholar 

  • Özcan S, Firek S, Draper J (1993) Selectable marker genesengineered for specificexpression in target cells for planttransformation. Nat Biotechnol 11:218–221

    Article  Google Scholar 

  • Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Lu G (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6(1):24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrott WA, All JN, Adang MJ, Bailey MA, Boerma HR, Stewart CN (1994) Recovery and evaluation of soybean plants transgenic for a bacillus thuringiensis var. kurstaki insecticidal gene. In Vitro Cell Dev Biol Plant 30:144–149

    Article  Google Scholar 

  • Peferoen M, Jansens S, Reynaerts A, Leemans J (1990) Potato plants with engineered resistance against insect attack. Mol Cel Biol Potato:193–204

    Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnology 8(10):939–943

    CAS  PubMed  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. PNAS 88(8):3324–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson SA, Fischhoff DA (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22:313–321

    Article  CAS  PubMed  Google Scholar 

  • Peumans WJ, van Damme EJM (1996) Prevalence, biological activity and genetic manipulation of lectins in foods. Trends Food Sci Technol 7(4):132–138

    Article  CAS  Google Scholar 

  • Pushpa R, Raveenderan TS, Rajeswari S, Amalabalu P, Punitha D (2013) Genetic transformation of cry1EC gene into cotton (Gossypiumhirsutum L.) for resistance against Spodopteralitura. Afr J Biotechnol 12(15)

    Google Scholar 

  • Qaim M (2009) The economics of genetically modified crops. Ann Rev Resour Econ 1(1):665–694

    Article  Google Scholar 

  • Qin D, Liu XY, Miceli C, Zhang Q, Wang PW (2019) Soybean plants expressing the bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela. BMC Biotechnol 19:1–12

    Article  Google Scholar 

  • Mahmood-ur-Rahman KH, Khan MA, Bakhsh A, Rao AQ (2021) 01. An insight of cotton leaf curl virus: a devastating plant pathogenic begomovirus. Pure Appl Biol 1(3):52–58

    Article  Google Scholar 

  • Rahnama H, Sheykhhasan M (2016) Transformation and light inducible expression of cry1Ab gene in oilseed rape (Brassica napus L.). J Sci Islamic Rep Iran 27(4):313–319

    Google Scholar 

  • Ramachandran S, Buntin GD, All JN, Tabashnik BE, Raymer PL, Adang MJ, Stewart CN Jr (1998) Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a bacillus thuringiensis toxin. J Econ Entomol 91(6):1239–1244

    Article  Google Scholar 

  • Ramesh S, Nagadhara D, Reddy VD, andRao, K.V. (2004) Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of agrobacterium tumefaciens. Plant Sci 166(4):1077–1085

    Article  CAS  Google Scholar 

  • Razzaq A, Ali A, Zahid S, Malik A, Pengtao L, Gong W, Zafar MM (2023) Engineering of cry genes “Cry11 and Cry1h” in cotton (Gossypiumhirsutum L.) for protection against insect pest attack. Arch Phytopathol plant Prot:1–13

    Google Scholar 

  • Salehian H, Rahnama H, Dezhsetan S, Babaei S (2021) Constitutive expression of a synthetic cry1Ab gene confers resistance to potato tuber moth (Phthorimaeaoperculella Zeller) larva. Crop breed. Appl Biotechnol 21

    Google Scholar 

  • Santos EN, Menezes LP, Dolabella SS, Santini A, Severino P, Capasso R, Jain S (2022) Bacillus thuringiensis: from biopesticides to anticancer agents. Biochimie 192:83–90

    Article  CAS  PubMed  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpaarmigera. Plant Sci 168(4):1135–1146

    Article  CAS  Google Scholar 

  • Sharma HC (2001) Cotton bollworm/legume pod borer, Helicoverpaarmigera (Hubner) (Noctuidae: Lepidoptera): biology and management. Crop Prot Comp CABI, Oxon

    Google Scholar 

  • Shelake RM, Pramanik D, Kim JY (2019) Evolution of plant mutagenesis tools: a shifting paradigm from random to targeted genome editing. Plant Biotechnol Rep 13:423–445

    Article  Google Scholar 

  • Siddiqui HA, Asif M, Asad S, Naqvi RZ, Ajaz S, Umer N, Mansoor S (2019) Development and evaluation of double gene transgenic cotton lines expressing cry toxins for protection against chewing insect pests. Sci Rep 9(1):11774

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui HA, Asif M, Naqvi RZ, Shehzad A, Sarwar M, Amin I, Mansoor S (2023) Development of modified Cry1Ac for the control of resistant insect pest of cotton, Pectinophora gossypiella. Gene 856:147113

    Article  Google Scholar 

  • Singh P, GK S, Thakur S, Rathore M, Verma OP, Singh NP, Das A (2022) Evaluation of transgenic chickpea harboring codon-modified Vip3Aa against gram pod borer (Helicoverpaarmigera H.). PLoS One 17(6):e0270011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18(2):148–153

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Farhan Y, Schaafsma AW (2019) Practical resistance of Ostrinianubilalis (Lepidoptera: Crambidae) to Cry1F bacillus thuringiensis maize discovered in Nova Scotia. Canada Sci Rep 9(1):18247

    Article  CAS  PubMed  Google Scholar 

  • Stewart CN Jr, Adang MJ, All JN, Raymer PL, Ramachandran S, Parrott WA (1996) Insect control and dosage effects in transgenic canola containing a synthetic bacillus thuringiensiscryIAc gene. Plant Physiol 112(1):115–120

    Article  CAS  PubMed  Google Scholar 

  • Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthusnivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobionavenae. Mol Breed 5:65–73

    Article  CAS  Google Scholar 

  • Sun L, Li J, Liu Y, Noman A, Chen L, Liu J (2022) Transcriptome profiling in rice reveals a positive role for OsNCED3 in defense against the brown planthopper, Nilaparvatalugens. BMC Genomics 23(1):634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE, Finson N, Johnson MW, Moar WJ (1993) Resistance to toxins from bacillus thuringiensis subsp. kurstaki causes minimal cross-resistance to B. Thuringiensis subsp. aizawai in the diamondback moth (Lepidoptera: Plutellidae). Appl Environ Microbiol 59(5):1332–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to bacillus thuringiensis. Annu Rev Entomol 39(1):47–79

    Article  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31(6):510–521

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35(10):926–935

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Carrière Y (2019) Global patterns of resistance to Bt crops highlighting pink bollworm in the United States, China, and India. J Econ Entomol 112(6):2513–2523

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Galili G (2004) Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol 22(9):463–469

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Chen H, Xu C, Li X, Lin Y, Zhang Q (2006) Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol Breed 18:1–10

    Article  CAS  Google Scholar 

  • Tariq M, Tabassum B, Bakhsh A, Farooq AM, Qamar Z, Akram F, Nasir IA (2022) Heterologous expression of cry1Ia12 insecticidal gene in cotton encodes resistance against pink bollworm, Pectinophoragossypiella (Lepidoptera: Gelechiidae); an alternate insecticidal gene for insect pest management. Mol Biol Rep 49(11):10557–10564

    Article  CAS  PubMed  Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57(2):231–245

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS, Bostock RM (2004) Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85(1):48–58

    Article  Google Scholar 

  • Toenniessen GH, O’Toole JC, DeVries J (2003) Advances in plant biotechnology and its adoption in developing countries. Current Opin. Plant Biol 6(2):191–198

    Google Scholar 

  • Tohidfar M, Zare N, Jouzani GS, Eftekhari SM (2013) Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tissue Organ Cult 113:227–235

    Article  CAS  Google Scholar 

  • Tohidfar M, Gharahyazi B, Mousavi M, Yazdani S, Golabchian R (2008) Agrobacterium-mediated transformation of cotton (Gossypiumhirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothisarmigera. Iran J Biotechnol 6(3):164–173

    CAS  Google Scholar 

  • Ueno M, Imaoka A, Kihara J, Arase S (2008) Tryptamine pathway-mediated DNA fragmentation is involved in sekiguchi lesion formation for light-enhanced resistance in lesion mimic mutant of rice to Magnaporthe grisea infection. J Phytopathol 156(11–12):715–724

    Article  CAS  Google Scholar 

  • Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnology 5(3):263–266

    Article  CAS  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3: Genes Genom Genet 3(12):2233–2238

    Article  Google Scholar 

  • Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328(6125):33–37

    Article  CAS  Google Scholar 

  • Vajhala CS, Sadumpati VK, Nunna HR, Puligundla SK, Vudem DR, Khareedu VR (2013) Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests. PLoS One 8(9):e72542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valin H, Sands RD, Van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, andWillenbockel, D. (2014) The future of food demand: understanding differences in global economic models. Agric Econ 45(1):51–67

    Article  Google Scholar 

  • Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S, Pershing J (2005) A method of controlling corn rootworm feeding using a bacillus thuringiensis protein expressed in transgenic maize. Crop Sci 45(3):931–938

    Article  CAS  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities andregulatory challenges. PLoS Biol 12:e1001877

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014a) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Y, Wang F, Liu C, Liu K (2014b) Development of transgenic Brassica napus with an optimized cry1C* gene for resistance to diamondback moth (Plutellaxylostella). Can J Plant Sci 94(8):1501–1506

    Article  CAS  Google Scholar 

  • Wang Z, Zhang K, Sun X, Tang K, Zhang J (2005) Enhancement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants. J Biosci 30:627–638

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Luo X, Guo H, Xiao J, Tian Y (2006) Transgenic cotton, expressing Amaranthuscaudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125(4):390–394

    Article  CAS  Google Scholar 

  • Wünn J, Klöti A, Burkhardt PK, Biswas GCG, Launis K, Iglesias VA, Potrykus I (1996) Transgenic indica rice breeding line IR58 expressing a synthetic crylA (b) gene from bacillus thuringiensis provides effective insect pest control. Biotechnology 14(2):171–176

    PubMed  Google Scholar 

  • Yamamoto T, McLaughlin RE (1981) Isolation of a protein from the parasporal crystal of bacillus thuringiensis var.kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochemi Biophys Res Comm 103(2):414–421

    Article  CAS  Google Scholar 

  • Yan C, Fan M, Yang M, Zhao J, Zhang W, Su Y, Xie D (2018) Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Mol Cell 70(1):136–149

    Article  CAS  PubMed  Google Scholar 

  • Yang DH, Hettenhausen C, Baldwin IT, andWu, J. (2012) Silencing Nicotianaattenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound-and herbivory-induced jasmonic acid accumulations. Plant Physiol 159(4):1591–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura S, Komatsu M, Kaku K, Hori M, Ogawa T, Muramoto K, Toriyama K (2012) Production of transgenic rice plants expressing Dioscorea batatas tuber lectin 1 to confer resistance against brown planthopper. Plant Biotechnol 29(5):501–504

    Article  CAS  Google Scholar 

  • Zafar MM, Mustafa G, Shoukat F, Idrees A, Ali A, Sharif F, Li F (2022) Heterologous expression of cry3Bb1 and cry3 genes for enhanced resistance against insect pests in cotton. Sci Rep 12(1):10878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Khan SA, Heckel DG, Bock R (2017) Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol 35(9):871–882

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li H, Zhong X, Tian J, Segers A, Xia L, Francis F (2022) RNA-interference-mediated aphid control in crop plants: A review. Agriculture 12(12):2108

    Article  Google Scholar 

  • Zhang QJ, Cong LI, Liu SK, Dong LAI, Qi QM, Lu CG (2013) Breeding and identification of insect-resistant rice by transferring two insecticidal genes, sbk and sck. Rice Sci 20(1):19–24

    Article  CAS  Google Scholar 

  • Zotti M, Dos Santos EA, Cagliari D, Christiaens O, Taning CNT, Smagghe G (2018) RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag Sci 74(6):1239–1250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khabbazi, S.D., Khabbazi, A.D., Yaman, C. (2024). Different Generations of Genetically Modified Crops for Insect Resistance. In: Kumar, S., Furlong, M. (eds) Plant Resistance to Insects in Major Field Crops. Springer, Singapore. https://doi.org/10.1007/978-981-99-7520-4_11

Download citation

Publish with us

Policies and ethics