Skip to main content

Characterization Techniques

  • Chapter
  • First Online:
Solar Cells
  • 284 Accesses

Abstract

The characterization techniques are important tools to understand and optimize the performance of a solar cell. In this chapter, some of the common techniques used for solar cell characterization are discussed in detail. These techniques include measurements of the solar cell's current–voltage (IV) curve, external quantum efficiency (EQE), capacitance–voltage (CV) curve, and transient photovoltage (TPV) response. IV curves provide information on the solar cell's maximum power output, open-circuit voltage, short-circuit current, and fill factor. EQE measurements reveal the solar cell's spectral response and its ability to convert photons into electrons. CV curves provide information on the solar cell’s doping concentration and depletion region width. TPV measurements are used to study the solar cell's carrier lifetime and mobility. Other techniques used for solar cell characterization include impedance spectroscopy, photoluminescence spectroscopy, and Raman spectroscopy. By using these techniques, researchers can better understand the underlying mechanisms of solar cell operation and identify ways to improve their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Würfel, P., and U. Würfel. 2016. Physics of solar cells: From basic principles to advanced concepts. John Wiley & Sons.

    MATH  Google Scholar 

  2. https://www.pveducation.org/.

  3. Ananda, W., 2017, July. External quantum efficiency measurement of solar cell. In 2017 15th International conference on quality in research (QiR): International symposium on electrical and computer engineering, 450–456. IEEE.

    Google Scholar 

  4. Suresh, M.S. 1996. Measurement of solar cell parameters using impedance spectroscopy. Solar Energy Materials and Solar Cells 43 (1): 21–28.

    Article  ADS  Google Scholar 

  5. Nickel, N.H., P. Lengsfeld, and I. Sieber. 2000. Raman spectroscopy of heavily doped polycrystalline silicon thin films. Physical Review B 61 (23): 15558.

    Article  ADS  Google Scholar 

  6. Mackel, H., and A. Cuevas. 2001. Spectral response of the photoconductance: A new technique for solar cell characterization.

    Google Scholar 

  7. Leyre, S., Proost, K., Cappelle, J., Durinck, G., Hofkens, J., Deconinck, G., and P. Hanselaer. 2015. Experimental validation of adding-doubling modeling of solar cells including luminescent down-shifting layers. Journal of Renewable and Sustainable Energy 7 (4).

    Google Scholar 

  8. Chan, K.S., M.X. Heng, D. Ananthanarayanan, K.B. Choi, and J.W. Ho. 2022. Application of non-contact quantum efficiency measurement for solar cell fabrication process insights. Solar Energy 233: 494–503.

    Article  ADS  Google Scholar 

  9. Basore, P.A. 1993, May. Extended spectral analysis of internal quantum efficiency. In Conference record of the twenty third IEEE photovoltaic specialists conference-1993 (Cat. No. 93CH3283–9), 147–152. IEEE.

    Google Scholar 

  10. Alshehawy, A.M., D.E.A. Mansour, M. Ghali, M. Lehtonen, and M.M. Darwish. 2021. Photoluminescence spectroscopy measurements for effective condition assessment of transformer insulating oil. Processes 9 (5): 732.

    Article  Google Scholar 

  11. Paxman, M., J. Nelson, B. Braun, J. Connolly, K.W.J. Barnham, C.T. Foxon, and J.S. Roberts. 1993. Modeling the spectral response of the quantum well solar cell. Journal of Applied Physics 74 (1): 614–621.

    Article  ADS  Google Scholar 

  12. Matson, R.J., K.A. Emery, and R.E. Bird. 1984. Terrestrial solar spectra, solar simulation and solar cell short-circuit current calibration: A review. Solar cells 11 (2): 105–145.

    Article  ADS  Google Scholar 

  13. Hamadani, B.H., and B. Dougherty. 2015. Solar cell characterization. In Semiconductor materials for solar photovoltaic cells, 229–245. Cham: Springer International Publishing.

    Google Scholar 

  14. Fahrenbruch, A., and R. Bube. 2012. Fundamentals of solar cells: Photovoltaic solar energy conversion. Elsevier.

    Google Scholar 

  15. Duran, E., Piliougine, M., Sidrach-de-Cardona, M., Galan, J., and J.M. Andujar. 2008, May. Different methods to obtain the I–V curve of PV modules: A review. In 2008 33rd IEEE Photovoltaic specialists conference, 1–6. IEEE.

    Google Scholar 

  16. King, D.L., Kratochvil, J.A., and W.E. Boyson. 2004. Photovoltaic array performance model, vol. 8, 1–19. United States. Department of Energy.

    Google Scholar 

  17. Jain, A., S. Sharma, and A. Kapoor. 2006. Solar cell array parameters using Lambert W-function. Solar Energy Materials and Solar Cells 90 (1): 25–31.

    Article  Google Scholar 

  18. Stokes, E.D., and T.L. Chu. 1977. Diffusion lengths in solar cells from short-circuit current measurements. Applied Physics Letters 30 (8): 425–426.

    Article  ADS  Google Scholar 

  19. Qi, B., and J. Wang. 2012. Open-circuit voltage in organic solar cells. Journal of Materials Chemistry 22 (46): 24315–24325.

    Article  Google Scholar 

  20. Green, M.A. 1982. Accuracy of analytical expressions for solar cell fill factors. Solar cells 7 (3): 337–340.

    Article  ADS  Google Scholar 

  21. Green, M.A., K. Emery, Y. Hishikawa, and W. Warta. 2010. Solar cell efficiency tables (version 35). Progress in photovoltaics: Research and applications 2 (18): 144–150.

    Article  Google Scholar 

  22. Kerr, M.J., and A. Cuevas. 2004. Generalized analysis of the illumination intensity versus open-circuit voltage of solar cells. Solar Energy 76 (1–3): 263–267.

    Google Scholar 

  23. Li, Y., N.J. Grabham, S.P. Beeby, and M.J. Tudor. 2015. The effect of the type of illumination on the energy harvesting performance of solar cells. Solar Energy 111: 21–29.

    Article  ADS  Google Scholar 

  24. Roumpakias, E., O. Zogou, and A. Stamatelos. 2015. Correlation of actual efficiency of photovoltaic panels with air mass. Renewable Energy 74: 70–77.

    Article  Google Scholar 

  25. Metzdorf, J. 1987. Calibration of solar cells. 1: The differential spectral responsivity method. Applied Optics 26 (9), 1701–1708.

    Google Scholar 

  26. Hartman, J.S., and M.A. Lind. 1982. Spectral response measurements for solar cells. Solar Cells 7 (1–2): 147–157.

    Article  Google Scholar 

  27. Esen, V., Ş Sağlam, and B. Oral. 2017. Light sources of solar simulators for photovoltaic devices: A review. Renewable and Sustainable Energy Reviews 77: 1240–1250.

    Article  Google Scholar 

  28. Singh, P., and N.M. Ravindra. 2012. Temperature dependence of solar cell performance—An analysis. Solar Energy Materials and Solar Cells 101: 36–45.

    Article  Google Scholar 

  29. McMahon, T.J., Basso, T.S., and S.R. Rummel. 1996, May. Cell shunt resistance and photovoltaic module performance. In Conference record of the twenty fifth IEEE photovoltaic specialists conference-1996, 1291–1294. IEEE.

    Google Scholar 

  30. Hovinen, A. 1994. Fitting of the solar cell IV-curve to the two diode model. Physica Scripta 1994 (T54): 175.

    Article  Google Scholar 

  31. Pysch, D., A. Mette, and S.W. Glunz. 2007. A review and comparison of different methods to determine the series resistance of solar cells. Solar Energy Materials and Solar Cells 91 (18): 1698–1706.

    Article  Google Scholar 

  32. Dhass, A.D., Natarajan, E., and L. Ponnusamy. 2012, December. Influence of shunt resistance on the performance of solar photovoltaic cell. In 2012 International conference on emerging trends in electrical engineering and energy management (ICETEEEM), 382–386. IEEE.

    Google Scholar 

  33. Seaman, C.H. 1982. Calibration of solar cells by the reference cell method—The spectral mismatch problem. Solar Energy 29 (4): 291–298.

    Article  ADS  Google Scholar 

  34. Emery, K.A., and C.R. Osterwald. 1986. Solar cell efficiency measurements. Solar Cells 17 (2–3): 253–274.

    Article  ADS  Google Scholar 

  35. Meusel, M., R. Adelhelm, F. Dimroth, A.W. Bett, and W. Warta. 2002. Spectral mismatch correction and spectrometric characterization of monolithic III–V multi-junction solar cells. Progress in Photovoltaics: Research and Applications 10 (4): 243–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arya, S., Mahajan, P. (2023). Characterization Techniques. In: Solar Cells. Springer, Singapore. https://doi.org/10.1007/978-981-99-7333-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7333-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7332-3

  • Online ISBN: 978-981-99-7333-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics