Skip to main content

Revitalizing Degraded Soils with Agroforestry Interventions: Opportunities, Challenges, and Future Direction

  • Chapter
  • First Online:
Agroforestry to Combat Global Challenges

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 36))

  • 117 Accesses

Abstract

Soil degradation is a major environmental issue affecting agricultural productivity, food security, and ecosystem services. Agroforestry, a land-use system that integrates trees, crops, and/or livestock in a single management unit, has been recognized as a promising approach for restoring degraded soils. Agroforestry systems provide multiple benefits, including improved soil fertility, increased biodiversity, enhanced ecosystem services, and diversified livelihoods. Agroforestry has been used for restoring degraded mining soils in India, waterlogged soils in Bangladesh, and degraded grasslands in China. Despite the potential of agroforestry intervention for restoring degraded soils, several challenges need to be addressed. These include management complexity, market access, land tenure, and policy issues, as discussed in previous sections. Addressing these challenges will require a concerted effort by stakeholders from different sectors, including farmers, researchers, policymakers, and civil society. The current book chapter provides an overview of the potential of agroforestry intervention for restoring degraded soils and highlights recent research on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aghajani H (2019) Soil properties across a chronosequence of Ailanthus altissima in semiarid plantations. Sustain For. 2(1):501

    Google Scholar 

  • Alam T, Suryanto P, Handayani S, Supriyanta S, Wulandari RA, Anshari A, Aisya AW, Purba AE, Widowati R, Taryono T (2022) Soil quality measurement for sustainable soybean yield agroforestry system under different crop rotation models. Biodivers J Biol Divers. 23(12). https://doi.org/10.13057/biodiv/d231209

  • Amadu FO, McNamara PE, Davis KE (2021) Soil health and grain yield impacts of climate resilient agriculture projects: evidence from southern Malawi. Agric Syst 193:103230. https://doi.org/10.1016/j.agsy.2021.103230

    Article  Google Scholar 

  • Aryal K, Maraseni T, Apan A (2023) Transforming agroforestry in contested landscapes: a win-win solution to trade-offs in ecosystem services in Nepal. Sci Total Environ 857(1):159301. https://doi.org/10.1016/j.scitotenv.2022.159301

    Article  CAS  PubMed  Google Scholar 

  • Awazi NP (2022) Agroforestry for climate change adaptation, resilience enhancement and vulnerability attenuation in smallholder farming systems in Cameroon. J Atmos Sci Res. 5(1). https://doi.org/10.30564/jasr.v5i1.4303

  • Belay A, Mirzabaev A, Recha JW, Oludhe C, Osano PM, Berhane Z, Olaka LA, Tegegne YT, Demissie T, Mutsami C, Solomon D (2023) Does climate-smart agriculture improve household income and food security? Evidence from Southern Ethiopia. In: Environment, development and sustainability. Springer, Cham, pp 1–2

    Google Scholar 

  • Berry N, Shukla A (2023) Assessment of growth performance of casuarina equisetifolia clones in tropical region of Jabalpur district of Madhya Pradesh. India. Int J Environ Clim Chang 13(11):266–271

    Google Scholar 

  • Bettles J, Battisti DS, Cook-Patton SC, Kroeger T, Spector JT, Wolff NH, Masuda YJ (2021) Agroforestry and non-state actors: a review. Forest Policy Econ 130:102538. https://doi.org/10.1016/j.forpol.2021.102538

    Article  Google Scholar 

  • Bhardwaj S, Soni R, Gupta SK, Shukla DP (2020) Mercury, arsenic, lead and cadmium in waters of the Singrauli coal mining and power plants industrial zone, Central East India. Environ Monit Assess 192(4):251. https://doi.org/10.1007/s10661-020-8225-2

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj DR, Salve A, Kumar J, Kumar A, Sharma P, Kumar D (2023) Biomass production and carbon storage potential of agroforestry land use systems in high hills of north-western Himalaya: an approach towards natural based climatic solution. Biomass Convers Biorefin 28:1–4

    Google Scholar 

  • Bishaw B, Soolanayakanahally R, Karki U, Hagan E (2022) Agroforestry for sustainable production and resilient landscapes. Agrofor Syst 96(3):447–451. https://doi.org/10.1007/s10457-022-00737-8

    Article  Google Scholar 

  • Carvalho FEL et al (2023) The interspecific interactions in agroforestry systems enhance leaf water use efficiency and carbon storage in cocoa. Environ Exp Bot 205:105119

    Article  CAS  Google Scholar 

  • Chatterjee D, Kuotsu R, Ray SK, Patra MK, Thirugnanavel A, Kumar R, Borah TR, Chowdhury P, Pongen I, Satapathy BS, Deka BC (2022) Preventing soil degradation in shifting cultivation using integrated farming system models. Arch Agron Soil Sci 68(13):1841–1857

    Article  Google Scholar 

  • da Silva GOA, Southam G, Gagen EJ (2022) Accelerating soil aggregate formation: A review on microbial processes as the critical step in a post-mining rehabilitation context. Soil Res 61(3):209–223. https://doi.org/10.1071/SR22092

    Article  Google Scholar 

  • Dagar S, Gupta (2022) Sustainable land-use systems for rehabilitation of highly sodic lands in the Indo-gangetic plains of North-Western India: Synthesis of long-term field experiments. J Soil Salinity Water Q 14(1):1–14

    Google Scholar 

  • Das SK, Ghosh GK, Avasthe R (2020) Valorizing biomass to engineered biochar and its impact on soil, plant, water, and microbial dynamics: a review. Biomass Conversion and Biorefinery, pp 1–7

    Google Scholar 

  • Dev I, Ram A, Ahlawat SP, Palsaniya DR, Singh R, Dhyani SK (2020) Bamboo-based agroforestry system (Dendrocalamusstrictus+ sesame–chickpea) for enhancing productivity in semi-arid tropics of central India. Agrofor Syst 94(5):1725–1739. https://doi.org/10.1007/s10457-020-00492-8

    Article  Google Scholar 

  • Dibala R, Jose S, Udawatta RP (2021) Silvopasture for food security in a changing climate. Agrofor Ecosyst Serv. 7:173–198

    Article  Google Scholar 

  • Fahad S, Chavan SB, Chichaghare AR, Uthappa AR, Kumar M, Kakade V, Pradhan A, Jinger D, Rawale G, Yadav DK, Kumar V (2022) Agroforestry systems for soil health improvement and maintenance. Sustainability 14(22):14877

    Article  CAS  Google Scholar 

  • Fentahun T, Gashaw T (2014) Evaluation of land use/land cover changes of Bantneka Watershed, Ethiopia. Civil Environ Res 6(7):90–93

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2020) Soil pollution: A hidden reality. Retrieved from http://www.fao.org/3/CA0140EN/CA0140EN.pdf. Rome

  • Gao Y, Wang H, Liu Y, Zhang X, Jing S, Peng Y, Huang D, Li X, Chen S, Lou S, Huang YL, C. (2022) Unexpected high contribution of residential biomass burning to non-methane organic gases (NMOGs) in the Yangtze River delta region of China. J Geophys Res Atmos. 127(4):e2021JD035050. https://doi.org/10.1029/2021JD035050

    Article  CAS  Google Scholar 

  • Gebrewahid Y, Meressa E (2020) Tree species diversity and its relationship with carbon stock in the parkland agroforestry of Northern Ethiopia. Cogent Biol 6(1):1728945

    Article  Google Scholar 

  • Gholamahmadi B, Jeffery S, Gonzalez-Pelayo O, Prats S, Bastos AC, Keizer JJ, Verheijen FG (2023) Biochar impacts on runoff and soil erosion by water: a systematic global scale meta-analysis. Sci Total Environ 871:161860

    Google Scholar 

  • Grez (2020) Toward predictable mining rehabilitation strategies: Understanding and overcoming the major belowground barriers for microbial rehabilitation engineers

    Google Scholar 

  • Guan Y, Zhou W, Bai Z, Cao Y, Wang J (2021) Delimitation of supervision zones based on the soil property characteristics in a reclaimed opencast coal mine dump on the Loess Plateau, China. Sci Total Environ 772:145006. https://doi.org/10.1016/j.scitotenv.2021.145006

    Article  CAS  PubMed  Google Scholar 

  • Gupta SR, Dagar JC, Teketay D (2020) Agroforestry for rehabilitation of degraded landscapes: achieving livelihood and environmental security. Agrofor Degrad Landsc 1:23–68

    Article  Google Scholar 

  • Gusli S, Sumeni S, Sabodin R, Muqfi IH, Nur M, Hairiah K, Van UD, Noordwijk M (2020) Soil organic matter, mitigation of and adaptation to climate change in cocoa–based agroforestry systems. Land 9(9):323. https://doi.org/10.3390/land9090323

    Article  Google Scholar 

  • Härkönen LH, Lepistö A, Sarkkola S, Kortelainen P, Räike A (2023) Reviewing peatland forestry: implications and mitigation measures for freshwater ecosystem browning. For Ecol Manag. 531:120776. https://doi.org/10.1016/j.foreco.2023.120776

    Article  Google Scholar 

  • Hasan MK, Islam MT, Akter R, Roshni NA (2022) Effects of reforestation approaches, agroforestry and woodlot, on plant community composition, diversity and soil properties in Madhupur Sal forest, Bangladesh. J Ecol Environ 46:21

    Article  Google Scholar 

  • Hübner R, Kühnel A, Lu J, Dettmann H, Wang W, Wiesmeier M (2021) Soil carbon sequestration by agroforestry systems in China: a meta-analysis. Agric Ecosyst Environ 315:107437. https://doi.org/10.1016/j.agee.2021.107437

    Article  CAS  Google Scholar 

  • Islam I, Cui S, Hoque MZ, Abdullah HM, Tonny KF, Ahmed M, Ferdush J, Xu L, Ding S (2022) Dynamics of tree outside forest land cover development and ecosystem carbon storage change in eastern coastal Zone, Bangladesh. Land 11(1):76. https://doi.org/10.3390/land11010076

    Article  Google Scholar 

  • Jahan H, Rahman MW, Islam MS, Rezwan-Al-Ramim A, Tuhin MMUJ, Hossain ME (2022) Adoption of agroforestry practices in Bangladesh as a climate change mitigation option: Investment, drivers, and SWOT analysis perspectives. Environ Chall 7:100509. https://doi.org/10.1016/j.envc.2022.100509

    Article  Google Scholar 

  • Jha DC, Pal H, Rani M (2020) Significance of grasses in establishment of ecological restoration in mined out degraded land in Jharia coalfield, Dhanbad

    Google Scholar 

  • Jinger D, Kaushal R, Kumar R, Paramesh V, Verma A, Shukla M, Chavan SB, Kakade V, Dobhal S, Uthappa AR, Roy T (2023) Degraded land rehabilitation through agroforestry in India: achievements, current understanding, and future prospectives. Front Ecol Evol 11:69

    Article  Google Scholar 

  • Kanwal Y, Vishvakarma SCR (2022) Crop productivity and soil properties under agroforestry system in Kosi watershed of Kumaun Himalaya. Indian J Ecol 49(1):21–30

    Google Scholar 

  • Kassa (2021) Agroforestry a pathway to climate smart agribusiness: Lessons to smallholder farmers

    Google Scholar 

  • Kisaka MO, Shisanya C, Cournac L, Manlay JR, Gitari H, Muriuki J (2023) Integrating no-tillage with agroforestry augments soil quality indicators in Kenya’s dry-land agroecosystems. Soil Tillage Res 227:105586

    Article  Google Scholar 

  • Kombra S, Ahlawat KS, Sirohi C, Poonia P, Singh C, Yadav S, Singroha P (2022) Soil moisture status in Eucalypts based agroforestry system in semi-arid region of Haryana. In Biol Forum Int J. 14(1):1526–1529

    Google Scholar 

  • Kumar BM, Kunhamu TK (2021) Carbon sequestration potential of agroforestry systems in India: a synthesis. In: Agroforestry and ecosystem services. Springer, Cham, pp 389–430

    Chapter  Google Scholar 

  • Kumar R, Pande VC, Bhardwaj AK, Dinesh D, Bhatnagar PR, Dobhal S, Sharma S, Verma K (2022a) Long-term impacts of afforestation on biomass production, carbon stock, and climate resilience in a degraded semi-arid ravine ecosystem of India. Ecol Eng 177:106559. https://doi.org/10.1016/j.ecoleng.2022.106559

    Article  Google Scholar 

  • Kumar R, Singh A, Bhardwaj AK, Kumar A, Yadav RK, Sharma PC (2022b) Reclamation of salt-affected soils in India: progress, emerging challenges, and future strategies. Land Degrad Dev 33(13):2169–2180. https://doi.org/10.1002/ldr.4320

    Article  Google Scholar 

  • Kyrgiakos LS, Kleftodimos G, Vlontzos G, Pardalos PM (2023) A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability. Oper Res. 23(1):7

    Google Scholar 

  • Lovell ST, Krishnaswamy K, Lin CH, Meier N, Revord RS, Thomas AL (2023) Nuts and berries from agroforestry systems in temperate regions can form the foundation for a healthier human diet and improved outcomes from diet-related diseases. Agrofor Syst:1–14. https://doi.org/10.1007/s10457-023-00858-8

  • Low G, Dalhaus T, Meuwissen MPM (2023) Mixed farming and agroforestry systems: a systematic review on value chain implications. Agric Syst 206:103606. https://doi.org/10.1016/j.agsy.2023.103606

    Article  Google Scholar 

  • Majhi PK, Raza B, Behera PP, Singh SK, Shiv A, Mogali SC, Bhoi TK, Patra B, Behera B (2022) Future-proofing plants against climate change: a path to ensure sustainable food systems. In: Biodiversity, functional ecosystems and sustainable food production. Springer, Cham, pp 73–116

    Google Scholar 

  • Maji B, Sarangi SK, Mandal UK, Burman D, Balasubramaniam P (2020) Climate change and management options for sustainable soil health and crop production: Eastern coast of India as an example. Adv Agric Res Technol J 4(1):28–41

    Google Scholar 

  • Malobane ME (2020) Conservation agriculture effects on soil quality and greenhouse gas emission in a sweet sorghum based cropping system in South Africa [Doctoral Dissertation]

    Google Scholar 

  • Malunguja GK, Thakur B, Devi A (2022) Heavy metal contamination of forest soils by vehicular emissions: ecological risks and effects on tree productivity. Environ Processes 9(1):11. https://doi.org/10.1007/s40710-022-00567-x

    Article  CAS  Google Scholar 

  • Matos PS, Cherubin MR, Damian JM, Rocha FI, Pereira MG, Zonta E (2022) Short-term effects of agroforestry systems on soil health in Southeastern Brazil. Agrofor Syst 96(5–6):897–908. https://doi.org/10.1007/s10457-022-00749-4

    Article  Google Scholar 

  • Menezes RSC, Sales AT, Primo DC, de Albuquerque ERGM, de Jesus KN, FGC P, da Silva Santana M, dos Santos UJ, Martins JCR, Althoff TD, do Nascimento DM, Gouveia RF, Fernandes MM, Loureiro DC, de Araújo Filho JC, Giongo V, Duda GP, Alves BJR, de Mello Ivo WMP, de Andrade EM, de Sampaio EVSB (2021) Soil and vegetation carbon stocks after land-use changes in a seasonally dry tropical forest. Geoderma 390:114943. https://doi.org/10.1016/j.geoderma.2021.114943

    Article  Google Scholar 

  • Mukhlis I, Rizaludin MS, Hidayah I (2022) Understanding socio-economic and environmental impacts of agroforestry on rural communities. Forests 13(4):556. https://doi.org/10.3390/f13040556

    Article  Google Scholar 

  • Nair PR, Kumar BM, Nair VD, Nair PR, Kumar BM, Nair VD (2021a) Shifting cultivation and taungya. In: An introduction to agroforestry, pp 61–86

    Google Scholar 

  • Nair PR, Kumar BM, Nair VD, Nair PR, Kumar BM, Nair VD (2021b) Global distribution of agroforestry systems. In: An introduction to agroforestry: four decades of scientific developments, pp 45–58

    Google Scholar 

  • Nurwijayanto A, Náiem M, Syahbudin A, Wahyuono S (2020) Eksplorasiantioksidantumbuhanobat yang berasaldaritamannasionalgunungMerapi Yogyakarta Indonesia. J Tumbuhan Obat Indonesia 13(1):25–31. https://doi.org/10.22435/jtoi.v13i1.1983

    Article  Google Scholar 

  • Nyirenda H, Balaka V (2021) Conservation agriculture-related practices contribute to maize (Zea mays L.) yield and soil improvement in Central Malawi. Heliyon 7(3):e06636. https://doi.org/10.1016/j.heliyon.2021.e06636

    Article  PubMed  PubMed Central  Google Scholar 

  • Ondrasek G, Rathod S, Manohara KK, Gireesh C, Anantha MS, Sakhare AS (2022) Salt stress in plants and mitigation approaches. Plants 11(6):717. https://doi.org/10.3390/plants11060717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ota L, Herbohn J, Gregorio N, Harrison S (2020) Reforestation and smallholder livelihoods in the humid tropics. Land Use Policy 92:104455. https://doi.org/10.1016/j.landusepol.2019.104455

    Article  Google Scholar 

  • Patel SK, Sharma A, Singh GS (2020) Traditional agricultural practices in India: an approach for environmental sustainability and food security. Energy Ecol Environ 5(4):253–271. https://doi.org/10.1007/s40974-020-00158-2

    Article  Google Scholar 

  • Rajan A, Boopathy B, Radhakrishnan M, Rao L, Schlüter OK, Tiwari BK (2023) Plasma processing: a sustainable technology in agri-food processing. Sustain Food Technol 1(1):9–49. https://doi.org/10.1039/D2FB00014H

    Article  CAS  Google Scholar 

  • Rathore AC et al (2021) Biomass, carbon stocks estimation and predictive modeling in mango based land uses on degraded lands in Indian Sub-Himalayas. Agrofor Syst 95:1563–1575

    Article  Google Scholar 

  • Sahle M, Saito O, Demissew S (2022) Characterization and mapping of enset-based home-garden agroforestry for sustainable landscape management of the Guragesocioecological landscape in Ethiopia. Environ Sci Pollut Res Int 29(17):24894–24910. https://doi.org/10.1007/s11356-021-17605-0

    Article  PubMed  Google Scholar 

  • Sahoo G, Wani AM (2019) Multifunctional agroforestry systems in India for livelihoods. Ann Horticulture 12(2):139–149

    Article  Google Scholar 

  • Samji A, Eashwarlal K, Shanmugavel S, Kumar S, Warrier RR (2023) Chloroplast genome skimming of a potential agroforestry species Melia dubia. Cav and its comparative phylogenetic analysis with major Meliaceae members. 3 Biotech 13(1):30

    Article  PubMed  Google Scholar 

  • Sari RR, Saputra DD, Hairiah K, Rozendaal DMA, Roshetko JM, van Noordwijk M (2020) Gendered species preferences link tree diversity and carbon stocks in cacao agroforest in southeast Sulawesi, Indonesia. Land 9(4):108. https://doi.org/10.3390/land9040108

    Article  Google Scholar 

  • SenGupta (2020) Study on soil fertility restoration in overburden dumps through biological means in Bastacola opencast mine, Jharia (Jharkhand) coalfields ([Doctoral Dissertation]. Midnapore, West Bengal, India: Vidyasagar University,)

    Google Scholar 

  • Sikka AK, Madhu M, Chand S, Singh DV, Selvi V, Sundarambal P, Jeevarathanam K, Murgaiah M (2014) Impact analysis of participatory integrated watershed management programme in semi-arid region of Tamil Nadu, India. Indian J Soil Conserv 42(1):98–106

    Google Scholar 

  • Sileshi M, Nath AJ (2020) Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. Agrofor Degrad Landsc. 1:225–253

    Article  Google Scholar 

  • Sileshi GW, Mafongoya PL, Nath AJ (2020) Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. Agrofor Degrad Landsc 1:225–253

    Article  Google Scholar 

  • Sileshi GW, Dagar JC, Nath AJ, Kuntashula E (2023) Agroforestry as a climate-smart agriculture: Strategic interventions, current practices and policies. In: Agroforestry for sustainable intensification of agriculture in Asia and Africa. Springer, Singapore, pp 589–640. https://doi.org/10.1007/978-981-19-4602-8_18

    Chapter  Google Scholar 

  • Singh G (2022) Role of Prosopis in reclamation of salt-affected soils and soil fertility improvement. In: Prosopis as a heat tolerant nitrogen fixing desert food legume. Academic Press, Cambridge, MA, pp 27–54

    Chapter  Google Scholar 

  • Singh RK, Jena K, Chakraborty JP, Sarkar A (2020) Energy and exergy analysis for torrefaction of pigeon pea stalk (cajanus cajan) and eucalyptus (eucalyptus tereticornis). Int J Hydrogen Energy 45(38):18922–18936

    Article  CAS  Google Scholar 

  • Singh A, Singh P, Dhillon GPS, Sharma S, Singh B, Gill RIS (2023a) Differential impacts of soil salinity and water logging on Eucalyptus growth and carbon sequestration under mulched vs. unmulched soils in south-western Punjab, India. Plant Soil 482(1–2):401–425. https://doi.org/10.1007/s11104-022-05700-1

    Article  CAS  Google Scholar 

  • Singh S, Bhoi TK, Vyas V (2023b) Interceding microbial biofertilizers in agroforestry system for enhancing productivity. In: Plant growth promoting microorganisms of arid region. Springer, Singapore, pp 161–183

    Chapter  Google Scholar 

  • Singh S, Bhoi TK, Khan I, Vyas V, Athulya R, Rathi A, Samal I (2023c) Climate change drivers and soil microbe-plant interactions. In: Climate change and microbiome dynamics: Carbon cycle feedbacks. Springer, Cham, pp 157–176. https://doi.org/10.1007/978-3-031-21079-2_11

    Chapter  Google Scholar 

  • Stephen EA, Evans KD, Akwasi AA (2020) Effects of Faidherbia albida on some important soil fertility indicators on agroforestry parklands in the semi-arid zone of Ghana. Afr J Agric Res 15(2):256–268

    Article  Google Scholar 

  • Syed A, Sarwar G, Shah SH, Muhammad S (2021) Soil salinity research in 21st century in Pakistan: Its impact on availability of plant nutrients, growth and yield of crops. Commun Soil Sci Plant Anal 52(3):183–200. https://doi.org/10.1080/00103624.2020.1854294

    Article  CAS  Google Scholar 

  • Tadesse S, Gebretsadik W, Muthuri C, Derero A, Hadgu K, Said H, Dilla A (2021) Crop productivity and tree growth in intercropped agroforestry systems in semi-arid and sub-humid regions of Ethiopia. Agrofor Syst 95(3):487–498. https://doi.org/10.1007/s10457-021-00596-9

    Article  Google Scholar 

  • Tega M, Bojago E (2023) Farmer’s perceptions of agroforestry practices, contributions to rural household farm income, and their determinants in SodoZuria District, Southern Ethiopia. Int J For Res 2023:5439171

    Google Scholar 

  • Tomar JM, Ahmed A, Bhat JA, Kaushal R, Shukla G, Kumar R (2021, May 26) Potential and opportunities of agroforestry practices in combating land degradation. Agroforestry-small landholder’s tool for climate change resiliency and mitigation

    Google Scholar 

  • United Nations Department of Economic and Social Affairs Population Division (2021) World population prospects 2020: Highlights (ST/ESA/SER.A/423). Retrieved from https://population.un.org/wpp/Publications/Files/WPP2020_Highlights.pdf. New York, United Nations

  • Wang H, Cao X, Fan W, Deng P, Xu X (2023) Effects of intercropping systems of Phyllostachysedulis and Bletillastriata on soil bacterial community composition and function. Agrofor Syst 97(4):617–630. https://doi.org/10.1007/s10457-023-00814-6

    Article  Google Scholar 

  • Yusnaini S, Niswati A, Aini SN, Arif MAS, Dewi RP, Rivaie AA (2021) Changes in soil respiration after application of in situ soil amendment and phosphate fertilizer under soybean cultivation at ultisol South Lampung, Indonesia. In IOPConferenceSeries. IOP Conference Series: Earth and Environmental Science. 724(1):012002. IOP Publishing. https://doi.org/10.1088/1755-1315/724/1/012002

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vyas, V., Bhoi, T.K., Samal, I., Singh, S., Mahanta, D.K. (2024). Revitalizing Degraded Soils with Agroforestry Interventions: Opportunities, Challenges, and Future Direction. In: Jatav, H.S., Rajput, V.D., Minkina, T., Van Hullebusch, E.D., Dutta, A. (eds) Agroforestry to Combat Global Challenges. Sustainable Development and Biodiversity, vol 36. Springer, Singapore. https://doi.org/10.1007/978-981-99-7282-1_25

Download citation

Publish with us

Policies and ethics