Skip to main content

Utilizing Satellite Imagery for Flood Monitoring in Urban Regions

  • Conference paper
  • First Online:
Fourth International Conference on Image Processing and Capsule Networks (ICIPCN 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 798))

Included in the following conference series:

  • 182 Accesses

Abstract

According to the report, billions of people are affected by floods as it is a natural hazard caused by heavy rainfall or glacier melting. Floods occur when there is an overflow of water bodies like rivers, lakes, or oceans, in which there is a heavy flow of water that enters cities and villages causing lots of damage to homes and businesses. To decrease the impact of floods and decrease the loss of life and property, it is important to use the technology available to us to detect the flood-affected areas. But before using the technologies, extraction of water bodies from remote sensing areas is an important task that is mostly done by using a deep learning network for extraction of water bodies. In this paper, we have surveyed the previous research papers which talk about various techniques to predict the condition of water bodies from satellite-captured images and further use it to detect floods. In this paper, we have written the survey table about the accuracy of the techniques used in the paper and a summary of that paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martinis S, Twele A, Voigt S (2009) Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high-resolution TerraSAR-X data. Nat Hazard 9:303–314. https://doi.org/10.5194/nhess-9-303-2009

    Article  Google Scholar 

  2. Giustarini L, Hostache R, Matgen P, Schumann GJ, Bates PD, Mason DC (2013) A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 51(4):2417–2430. https://doi.org/10.1109/TGRS.2012.2210901

  3. Mason DC, Giustarini L, Garcia-Pintado J, Cloke HL (2014) Detection of flooded urban areas in high-resolution Synthetic aperture radar images using double scattering. Int J Appl Earth Observ Geoinf 28:150–159. ISSN 1569-8432. https://doi.org/10.1016/j.jag.2013.12.002, https://www.sciencedirect.com/science/article/pii/S0303243413001700

  4. Giustarini L, Vernieuwe H, Verwaeren J, Chini M, Hostache R, Matgen P, Verhoest N, De Baets B (2015) Accounting for image uncertainty in SAR-based flood mapping. Int J Appl Earth Observ Geoinf 34:70–77. https://doi.org/10.1016/j.jag.2014.06.017

  5. Martinis S, Jens Kersten, André Twele, A fully automated TerraSAR-X based flood service. ISPRS J Photogrammetry Remote Sensing 104:203–212. ISSN 0924-2716. https://doi.org/10.1016/j.isprsjprs.2014.07.014, https://www.sciencedirect.com/science/article/pii/S0924271614001981

  6. Boni G et al (2016) A prototype system for flood monitoring based on flood forecast combined With COSMO-SkyMed and Sentinel-1 data. IEEE J Sel Top Appl Earth Observ Remote Sens 9(6):2794–2805. https://doi.org/10.1109/JSTARS.2016.2514402

    Article  Google Scholar 

  7. Giustarini L et al (2016) Probabilistic flood mapping using synthetic aperture radar data. IEEE Trans Geosci Remote Sens 54(12):6958–6969. https://doi.org/10.1109/TGRS.2016.2592951

    Article  Google Scholar 

  8. Chapi K, Singh V, Shirzadi A, Shahabi H, Bui D, Pham B, Khosravi K (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95:229–245. https://doi.org/10.1016/j.envsoft.2017.06.012

    Article  Google Scholar 

  9. Notti D, Giordan D, Caló F, Pepe A, Zucca F, Galve JP (2018) Potential and limitations of open satellite data for flood mapping. Remote Sens 10:1673. https://doi.org/10.3390/rs10111673

    Article  Google Scholar 

  10. Wang P, Zhang G, Leung H (2019) Improving super-resolution flood inundation mapping for multispectral remote sensing image by supplying more spectral information. IEEE Geosci Remote Sens Lett 16(5):771–775. https://doi.org/10.1109/LGRS.2018.2882516

    Article  Google Scholar 

  11. Rahnemoonfar M, Murphy R, Miquel MV, Dobbs D, Adams A (2018) Flooded area detection from UAV images based on densely connected recurrent neural networks. In: IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium, pp 1788–1791. https://doi.org/10.1109/IGARSS.2018.8517946

  12. Bioresita F, Puissant A, Stumpf A, Malet J-P (2018) A method for automatic and rapid mapping of water surfaces from Sentinel-1 imagery. Remote Sensing 10:217. https://doi.org/10.3390/rs10020217

    Article  Google Scholar 

  13. Li Y, Martinis S, Plank S, Ludwig R (2018) An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data. Int J Appl Earth Observ Geoinf 73:123–135. ISSN 0303-2434. https://doi.org/10.1016/j.jag.2018.05.023, https://www.sciencedirect.com/science/article/pii/S0303243418302782

  14. Li Y, Martinis S, Wieland M (2019) Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence. ISPRS J Photogramm Remote Sens 152:178–191. https://doi.org/10.1016/j.isprsjprs.2019.04.014

    Article  Google Scholar 

  15. Rudner T, Rußwurm M, Fil J, Pelich R, Bischke B, Kopackova-Strnadova V, Biliński P (2019) Multi3Net: segmenting flooded buildings via fusion of multiresolution, multisensor, and multitemporal satellite imagery. Proc AAAI Conf Artif Intell 33:702–709. https://doi.org/10.1609/aaai.v33i01.3301702

    Article  Google Scholar 

  16. Nallapareddy A, Varadharajulu B (2019) Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. Egypt J Remote Sens Space Sci 23.https://doi.org/10.1016/j.ejrs.2019.01.001

  17. Shen X, Anagnostou E, Allen G, Brakenridge R, Kettner A (2019) Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar. Remote Sens Environ 221:302–315. https://doi.org/10.1016/j.rse.2018.11.008

    Article  Google Scholar 

  18. Cao H, Zhang H, Wang C, Zhang B (2019) Operational flood detection using Sentinel-1 SAR data over large areas. Water 11:786. https://doi.org/10.3390/w11040786

    Article  Google Scholar 

  19. Huang M, Jin S (2020) Rapid flood mapping and evaluation with a supervised classifier and change detection in Shouguang using Sentinel-1 SAR and Sentinel-2 optical data. Remote Sensing 12:2073. https://doi.org/10.3390/rs12132073

    Article  Google Scholar 

  20. DeVries B, Huang C, Armston J, Huang W, Jones JW, Lang MW (2020) Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google earth engine. Remote Sensing Environ 240:111664. ISSN 0034-4257. https://doi.org/10.1016/j.rse.2020.111664, https://www.sciencedirect.com/science/article/pii/S003442572030033X

  21. Bonafilia D, Tellman B, Anderson T, Issenberg E (2020) Sen1Floods11: a georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1. IEEE/CVF Conf Comput Vision Pattern Recogn Works (CVPRW) 2020:835–845. https://doi.org/10.1109/CVPRW50498.2020.00113

    Article  Google Scholar 

  22. Li Y, Niu Z, Xu Z, Yan X (2020) Construction of high spatial-temporal water body dataset in China based on Sentinel-1 archives and GEE. Remote Sens 12:2413. https://doi.org/10.3390/rs12152413

    Article  Google Scholar 

  23. Jain P, Schoen-Phelan B, Ross R (2020) Automatic flood detection in Sentinel-2 images using deep convolutional neural networks. https://doi.org/10.1145/3341105.3374023

  24. Jardosh P, Kanvinde A, Dixit A, Dholay S (2020) Detection of flood prone areas by flood mapping of SAR imagery. Third Int Conf Smart Syst Inventive Technol (ICSSIT) 2020:814–819. https://doi.org/10.1109/ICSSIT48917.2020.9214089

    Article  Google Scholar 

  25. Hashemi-Beni L, Gebrehiwot AA (2021) Flood extent mapping: an integrated method using deep learning and region growing using UAV optical data. IEEE J Sel Top Appl Earth Observ Remote Sens 14:2127–2135. https://doi.org/10.1109/JSTARS.2021.3051873

    Article  Google Scholar 

  26. Moharrami M, Javanbakht M, Attarchi S (2021) Automatic flood detection using sentinel-1 images on the google earth engine. Environ Monit Assess 193:248. https://doi.org/10.1007/s10661-021-09037-7

    Article  Google Scholar 

  27. Li M, Wu P, Wang B, Park H, Yang H, Wu Y (2021) A deep learning method of water body extraction from high-resolution remote sensing images with multisensors. IEEE J Sel Top Appl Earth Observ Remote Sens 14:3120–3132. https://doi.org/10.1109/JSTARS.2021.3060769

    Article  Google Scholar 

  28. https://users.cs.cf.ac.uk/Dave.Marshall/Vision_lecture/node35.html

  29. Di Baldassarre G, Schumann G, Bates PD, Freer JE, Beven KJ (2010) Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. Hydrol Sci J 55(3):364–376. https://doi.org/10.1080/02626661003683389

    Article  Google Scholar 

  30. https://link.springer.com/article/10.1007/s13198-021-01152-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Sakpal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakpal, P., Bhosagi, S., Pawar, K., Patil, P., Ghatkar, P. (2023). Utilizing Satellite Imagery for Flood Monitoring in Urban Regions. In: Shakya, S., Tavares, J.M.R.S., Fernández-Caballero, A., Papakostas, G. (eds) Fourth International Conference on Image Processing and Capsule Networks. ICIPCN 2023. Lecture Notes in Networks and Systems, vol 798. Springer, Singapore. https://doi.org/10.1007/978-981-99-7093-3_6

Download citation

Publish with us

Policies and ethics