Skip to main content

Hist2Vec: Kernel-Based Embeddings for Biological Sequence Classification

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14248))

Included in the following conference series:

  • 653 Accesses

Abstract

Biological sequence classification is vital in various fields, such as genomics and bioinformatics. The advancement and reduced cost of genomic sequencing have brought the attention of researchers for protein and nucleotide sequence classification. Traditional approaches face limitations in capturing the intricate relationships and hierarchical structures inherent in genomic sequences, while numerous machine-learning models have been proposed to tackle this challenge. In this work, we propose Hist2Vec, a novel kernel-based embedding generation approach for capturing sequence similarities. Hist2Vec combines the concept of histogram-based kernel matrices and Gaussian kernel functions. It constructs histogram-based representations using the unique k-mers present in the sequences. By leveraging the power of Gaussian kernels, Hist2Vec transforms these representations into high-dimensional feature spaces, preserving important sequence information. Hist2Vec aims to address the limitations of existing methods by capturing sequence similarities in a high-dimensional feature space while providing a robust and efficient framework for classification. We employ kernel Principal Component Analysis (PCA) using standard machine-learning algorithms to generate embedding for efficient classification. Experimental evaluations on protein and nucleotide datasets demonstrate the efficacy of Hist2Vec in achieving high classification accuracy compared to state-of-the-art methods. It outperforms state-of-the-art methods by achieving \(>76\%\) and \(>83\%\) accuracies for DNA and Protein datasets, respectively. Hist2Vec provides a robust framework for biological sequence classification, enabling better classification and promising avenues for further analysis of biological data.

S. Ali, H. Mansoor and P. Chourasia—Equal Contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.gisaid.org/.

References

  1. Ali, S., Bello, B., Chourasia, P., et al.: Pwm2vec: an efficient embedding approach for viral host specification from coronavirus spike sequences. MDPI Biology (2022)

    Google Scholar 

  2. Ali, S., Bello, B., Chourasia, P., et al.: Virus2vec: Viral sequence classification using machine learning. arXiv preprint arXiv:2304.12328 (2023)

  3. Ali, S., Patterson, M.: Spike2vec: An efficient and scalable embedding approach for covid-19 spike sequences. CoRR arXiv:2109.05019 (2021)

  4. Ali, S., Sahoo, B., Khan, M.A., Zelikovsky, A., Khan, I.U., Patterson, M.: Efficient approximate kernel based spike sequence classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2022)

    Google Scholar 

  5. Ali, S., Tamkanat-E-Ali, Khan, M.A., Khan, I., Patterson, M., et al.: Effective and scalable clustering of sars-cov-2 sequences. Accepted for publication at “International Conference on Big Data Research (ICBDR)” (2021)

    Google Scholar 

  6. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Article  CAS  PubMed  Google Scholar 

  7. Bokharaeian, B., et al.: Automatic extraction of ranked snp-phenotype associations from text using a bert-lstm-based method. BMC Bioinform. 24(1), 144 (2023)

    Article  Google Scholar 

  8. Bonidia, R.P., Sampaio, L.D., et al.: Feature extraction approaches for biological sequences: a comparative study of mathematical features. Briefings in Bioinform. 22(5), bbab011 (2021)

    Google Scholar 

  9. Brandes, N., Ofer, D., Peleg, Y., Rappoport, N., Linial, M.: Proteinbert: a universal deep-learning model of protein sequence and func. Bioinformatics 38(8) (2022)

    Google Scholar 

  10. Chen, J., Li, K., et al.: A survey on applications of artificial intelligence in fighting against covid-19. ACM Comput. Surv. (CSUR) 54(8), 1–32 (2021)

    Article  Google Scholar 

  11. Chourasia, P., Ali, S., Ciccolella, S., Vedova, G.D., Patterson, M.: Reads2vec: Efficient embedding of raw high-throughput sequencing reads data. J. Comput. Biol. 30(4), 469–491 (2023)

    Article  CAS  PubMed  Google Scholar 

  12. Chourasia, P., Ali, S., et al.: Clustering sars-cov-2 variants from raw high-throughput sequencing reads data. In: International Conference on Computational Advances in Bio and Medical Sciences, pp. 133–148. Springer (2021)

    Google Scholar 

  13. Corso, G., et al.: Neural distance embeddings for biological sequences. In: Advances in Neural Information Processing Systems, vol. 34, pp. 18539–18551 (2021)

    Google Scholar 

  14. Farhan, M., Tariq, J., Zaman, A., Shabbir, M., Khan, I.: Efficient approximation algorithms for strings kernel based sequence classification. In: Advances in neural information processing systems (NeurIPS), pp. 6935–6945 (2017)

    Google Scholar 

  15. Gabler, F., Nam, S.Z., et al.: Protein sequence analysis using the mpi bioinformatics toolkit. Curr. Protoc. Bioinformatics 72(1), e108 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. Golestan Hashemi, F.S., et al.: Intelligent mining of large-scale bio-data: bioinformatics applications. Biotech Biotechnol. Equipment 32(1), 10–29 (2018)

    Article  Google Scholar 

  17. Guan, M., Zhao, L., Yau, S.S.T.: Classification of protein sequences by a novel alignment-free method on bacterial and virus families. Genes 13(10), 1744 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heinzinger, M., et al.: Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinform. 20(1), 1–17 (2019)

    Article  Google Scholar 

  19. Hsu, C.W., et al.: A practical guide to support vector classification (2003)

    Google Scholar 

  20. Human DNA: https://www.kaggle.com/code/nageshsingh/demystify-dna-sequencing-with-machine-learning/data (2022). Accessed 10 Oct 2022

  21. Khajeh-Saeed, A., Poole, S., Perot, J.B.: Acceleration of the smith-waterman algorithm using single and multiple graphics processors. J. Comput. Phys. 229(11), 4247–4258 (2010)

    Article  CAS  Google Scholar 

  22. Khandelwal, M., Kumar Rout, R., Umer, S., Mallik, S., Li, A.: Multifactorial feature extraction and site prognosis model for protein methylation data. Brief. Funct. Genomics 22(1), 20–30 (2023)

    Article  CAS  PubMed  Google Scholar 

  23. Kuzmin, K., et al.: Machine learning methods accurately predict host specificity of coronaviruses based on spike sequences alone. Biochem. Biophys. Res. Commun. 533, 553–558 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for svm protein classification. In: Biocomputing, pp. 564–575 (2001)

    Google Scholar 

  25. Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)

    Article  Google Scholar 

  26. Lou, H., Schwartz, M., Bruck, J., Farnoud, F.: Evolution of \( k \)-mer frequencies and entropy in duplication and substitution mutation systems. IEEE Trans. Inf. Theory 66(5), 3171–3186 (2019)

    Article  Google Scholar 

  27. Mitchell, A.L., Attwood, T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A., Brown, S.D., Chang, H.Y., El-Gebali, S., Fraser, M.I., et al.: Interpro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47(D1), D351–D360 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. Otto, M.P.: Scalable and interpretable kernel methods based on random fourier features (2023)

    Google Scholar 

  29. P. Kuksa, P., Khan, I., Pavlovic, V.: Generalized similarity kernels for efficient sequence classification. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 873–882. SIAM (2012)

    Google Scholar 

  30. Pickett, B.E., Sadat, E.L., Zhang, Y., Noronha, J.M., Squires, R.B., et al.: Vipr: an open bioinformatics database and analysis resource for virology research. Nucleic acids research, pp. D593–D598 (2012)

    Google Scholar 

  31. Qi, R., Guo, F., Zou, Q.: String kernels construction and fusion: a survey with bioinformatics application. Front. Comp. Sci. 16(6), 166904 (2022)

    Article  Google Scholar 

  32. Rao, R., Bhattacharya, N., et al.: Evaluating protein transfer learning with tape. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  33. Roman, I., Santana, R., et al.: In-depth analysis of svm kernel learning and its components. Neural Comput. Appl. 33(12), 6575–6594 (2021)

    Article  Google Scholar 

  34. Saifuddin, K.M., et al.: Seq-hygan: Sequence classification via hypergraph attention network. arXiv preprint arXiv:2303.02393 (2023)

  35. Scholkopf, B., Sung, K.K., et al.: Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Trans. Signal Process. 45(11), 2758–2765 (1997)

    Article  Google Scholar 

  36. Shen, J., Qu, et al.: Wasserstein distance guided representation learning for domain adaptation. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  37. Sikander, R., Ghulam, A., Ali, F.: Xgb-drugpred: computational prediction of druggable proteins using extreme gradient boosting and optimized features set. Sci. Rep. 12(1), 5505 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Solis-Reyes, S., Avino, M., Poon, A., Kari, L.: An open-source k-mer based machine learning tool for fast and accurate subtyping of hiv-1 genomes. Plos One (2018)

    Google Scholar 

  39. Sun, C., Ai, X., Zhang, Z., Hancock, E.R.: Labeled subgraph entropy kernel. arXiv preprint arXiv:2303.13543 (2023)

  40. Taslim, M., Prakash, C., et al.: Hashing2vec: Fast embedding generation for sars-cov-2 spike sequence classification. In: ACML, pp. 754–769. PMLR (2023)

    Google Scholar 

  41. Vamathevan, J., Clark, et al.: Applications of machine learning in drug discovery and development. Nature Rev. Drug Discovery 18(6), 463–477 (2019)

    Google Scholar 

  42. Wood, D., Salzberg, S.: Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15 (2014)

    Google Scholar 

  43. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarwan Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, S., Mansoor, H., Chourasia, P., Patterson, M. (2023). Hist2Vec: Kernel-Based Embeddings for Biological Sequence Classification. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2023. Lecture Notes in Computer Science(), vol 14248. Springer, Singapore. https://doi.org/10.1007/978-981-99-7074-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7074-2_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7073-5

  • Online ISBN: 978-981-99-7074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics