Skip to main content

Performance Exploration of Impinging Jet Solar Air Heater: A Comparative Study

  • Conference paper
  • First Online:
Fluid Mechanics and Fluid Power, Volume 7 (FMFP 2022)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 117 Accesses

Abstract

Given the imminent depletion of fossil fuels, the present scenario relies on capturing solar energy. The current study compares experimental trials of traditional SAH with alternative impinging jet ribbed solar air heater designs. The experimental investigation is investigated by increasing the Re from 4000 to 16,500 and comparing the results. The geometric parameters and jet parameters used in the investigation were e/dhd = 0.043, P/e = 10, α = 55°, Xst/dhd = 0.40, Ysp/dhd = 0.84, and dj/dhd = 0.064. The impinging jet with multi-V-shaped ribs outperformed the V-shaped ribbed SAH, with a reported thermohydraulic efficiency of 3.301 compared to 2.05 for the V-shaped ribbed SAH and 1.83 for the impinging jet flat-plate solar air. It establishes that when active and passive heat transfer approaches are coupled, heat transfer enhancement and THEP are increased. The findings were also compared to traditional SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SAH:

Solar air heater

Ao:

Duct opening area, m2

Cp:

Specific heat at const. pressure, J kg−1 K−1

dhd:

Hydraulic dia. of the channel, m

Ap:

Absorber plate area, m2

Cd:

Coefficient of discharge of orifice plate

H:

Vertical channel height, m

e:

Wire roughness height, m

m:

Flow rate of air, kg s−1

L:

Length of testing section, m

P:

Roughness pitch, m

ka:

Air thermal conductivity, W m−1 K

h:

Convective coefficient, W m−2 K

Qf:

Heat exchange rate, W

ΔPd:

Pressure decrement crosswise in the testing section, N m−2

ΔPo:

Pressure decrement in orifice meter, N m−2

Tin:

Entry air temp. in the conduit, K

Tout:

Exit air temp. in plenum, K

Tmp:

Average plate temperature, K

Tmf:

Mean temp. of air, K

V:

Fluid speed, m s−1

W:

Conduit breadth, m Dimensionless factors/numbers

e/dhd:

Relative wire rib roughness height

fs:

Friction factor of conventional SAH

Nu:

Nusselt number

Nus:

Nusselt number of conventional SAH

P/e:

Relative roughness pitch

w/W:

Width ratio

Pr:

Prandtl number

Re:

Reynolds number

fp:

Friction penalty of a roughened surface

Xst/dhd:

Streamwise impinging jet pitch ratio

Yst/dhd:

Spanwise impinging jet pitch ratio

THEP:

Thermohydrodynamic efficiency parameter

α:

Attack angle

β:

Fraction of hole distance corresponding of pipe width

ρair:

The density of fluid, kg m−3

ρair:

Density of flowing air at mean temperature, kg m−3

ϑ:

Kinematic viscosity, m2 s−1

References

  1. Phu NM, Tuyen V, Ngo TT (2019) Augmented heat transfer and friction investigations in solar air heater artificially roughened with metal shavings. J Mech Sci Technol 33(7):3521–3529. https://doi.org/10.1007/s12206-019-0646-x

    Article  Google Scholar 

  2. Singh I, Singh S, Vardhan S (2021) Heat transfer and fluid flow characteristics of solar air heater duct with non-uniform ribs. J Mech Sci Technol 35(1):343–350. https://doi.org/10.1007/s12206-020-1234-9

    Article  MathSciNet  Google Scholar 

  3. Sharma S, Das RK, Kulkarni K (2021) Computational and experimental assessment of solar air heater roughened with six different baffles. Case Stud Therm Eng 27:101350. https://doi.org/10.1016/j.csite.2021.101350

    Article  Google Scholar 

  4. Kumar R, Goel V, Bhattacharyya S, Tyagi VV, Abusorrah AM (2022) Experimental investigation for heat and flow characteristics of solar air heater having symmetrical gaps in multiple-arc rib pattern as roughness elements. Exp Heat Transf 35(4):466–483. https://doi.org/10.1080/08916152.2021.1905752

    Article  Google Scholar 

  5. Sharma A, Thakur S, Dhiman P (2022) Jet impingement in a V-rib roughened solar air heater: an experimental approach. Energy Sourc Part A Recover Util Environ Eff 44(3):6970–6984. https://doi.org/10.1080/15567036.2022.2105988

    Article  Google Scholar 

  6. Mousavi Ajarostaghi SS, Zaboli M, Javadi H, Badenes B, Urchueguia JF (2022) A review of recent passive heat transfer enhancement methods. Energies 15(3):986. https://doi.org/10.3390/en15030986

  7. Yadav SK (2021) Thermal performance evaluation of arc rib having symmetrical wide gaps and staggered elements and additional narrow gap in each arc segment used in absorber surface of solar air heater. Appl Sol Energy 57(3):192–197. https://doi.org/10.3103/S0003701X21030105

  8. Josyula T, Singh S, Dhiman P (2018) Numerical investigation of a solar air heater comprising longitudinally finned absorber plate and thermal energy storage system. J Renew Sustain Energy 10(5):055901. https://doi.org/10.1063/1.5035136

    Article  Google Scholar 

  9. Goel AK, Singh SN (2019) Performance studies of a jet plate solar air heater with longitudinal fins. Int J Ambient Energy 40(2):119–127. https://doi.org/10.1080/01430750.2017.1372808

    Article  Google Scholar 

  10. Chamoli S, Thakur NS (2015) Effect of roughness height ratio in V down perforated baffle roughness on thermohydraulic performance of solar air heater: an experimental study. Int J Ambient Energy 36(5):242–247. https://doi.org/10.1080/01430750.2013.853206

    Article  Google Scholar 

  11. Kumar R, Nadda R, Rana A, Chauhan R, Chandel SS (2020) Performance investigation of a solar thermal collector provided with air jets impingement on multi V-shaped protrusion ribs absorber plate. Heat Mass Transf 56(3):913–930. https://doi.org/10.1007/s00231-019-02755-2

    Article  Google Scholar 

  12. Shukla AK, Dewan A (2017) Flow and thermal characteristics of jet impingement: comprehensive review. Int J Heat Technol 35(1):153–166. https://doi.org/10.18280/ijht.350121

    Article  Google Scholar 

  13. Choudhury C, Garg HP (1991) Evaluation of a jet plate solar air heater. Sol Energy 46(4):199–209. https://doi.org/10.1016/0038-092X(91)90064-4

    Article  Google Scholar 

  14. Chauhan R, Thakur NS (2014) Investigation of the thermohydraulic performance of impinging jet solar air heater. Energy 68:255–261. https://doi.org/10.1016/J.ENERGY.2014.02.059

    Article  Google Scholar 

  15. Belusko M, Saman W, Bruno F (2008) Performance of jet impingement in unglazed air collectors. Sol Energy 82(5):389–398. https://doi.org/10.1016/J.SOLENER.2007.10.005

    Article  Google Scholar 

  16. Singh S, Chaurasiya SK, Negi BS, Chander S, Nemś M, Negi S (2020) Utilizing circular jet impingement to enhance thermal performance of solar air heater. Renew Energy 154:1327–1345. https://doi.org/10.1016/j.renene.2020.03.095

    Article  Google Scholar 

  17. Maithani R, Kumar A, Raghav G, Nagpal M, Kumar B (2021) Thermal analysis of jet impingement on hemispherical protrusion on heated surface. Exp Heat Transf 34(7):662–677. https://doi.org/10.1080/08916152.2020.1808117

    Article  Google Scholar 

  18. Kannan C, Mohanraj M, Sathyabalan P (2021) Experimental investigations on jet impingement solar air collectors using pin-fin absorber. Proc Inst Mech Eng Part E J Process Mech Eng 235(1):134–146. https://doi.org/10.1177/0954408920935301

  19. ASHRAE (1977) Method of testing to determine the thermal performance of solar collectors. (ASHRAE standard 93–7)

    Google Scholar 

  20. Webb RL, Eckert ERG, Goldstein RJ (1972) Generalized heat transfer and friction correlations for tubes with repeated-rib roughness. Int J Heat Mass Transf 15(1):180–184. https://doi.org/10.1016/0017-9310(72)90179-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Thakur, S., Dhiman, P., Kumar, R. (2024). Performance Exploration of Impinging Jet Solar Air Heater: A Comparative Study. In: Singh, K.M., Dutta, S., Subudhi, S., Singh, N.K. (eds) Fluid Mechanics and Fluid Power, Volume 7. FMFP 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-7047-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7047-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7046-9

  • Online ISBN: 978-981-99-7047-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics