Skip to main content

An Automatic and Efficient Calibration Method for LiDAR-Camera in Targetless Environments

  • Conference paper
  • First Online:
Proceedings of 2023 Chinese Intelligent Systems Conference (CISC 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1090))

Included in the following conference series:

  • 421 Accesses

Abstract

Accurate calibration of LiDAR and camera in targetless environments is a crucial task in various applications. This paper proposes an automatic and efficient calibration method for LiDAR and camera in such environments. Firstly, the collected LiDAR point cloud and image data are preprocessed. Considering the richness of edges in natural environments, we incorporated edge features to establish the 2D-3D correspondence between LiDAR and camera data. Additionally, we employed RANSAC to obtain a rough estimation of the LiDAR-camera transformation. Given the initial guess, we further optimize the transform estimation based on normalized information distance (a cross-modal distance measure based on mutual information). Experimental evaluations confirm the accuracy and efficiency of the proposed method in targetless environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shan, T., Englot, B.J., Ratti, C., Rus, D.: LVI-SAM: tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. In: IEEE International Conference on Robotics and Automation, ICRA 2021, Xi’an, China, pp. 5692–5698. IEEE (2021)

    Google Scholar 

  2. Tóth, T., Pusztai, Z., Hajder, L.: Automatic lidar-camera calibration of extrinsic parameters using a spherical target. In: 2020 IEEE International Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31—August 31, 2020, pp. 8580–8586. IEEE (2020)

    Google Scholar 

  3. Zhao, Y., Wang, Y., Tsai, Y.: 2d-image to 3d-range registration in urban environments via scene categorization and combination of similarity measurements. In: Kragic, D., Bicchi, A., De Luca, A. (eds.) 2016 IEEE International Conference on Robotics and Automation, ICRA 2016, Stockholm, Sweden, May 16–21, 2016, pp. 1866–1872. IEEE (2016)

    Google Scholar 

  4. Zhang, X., Zhu, S., Guo, S., Li, J., Liu, H.: Line-based automatic extrinsic calibration of lidar and camera. In: IEEE International Conference on Robotics and Automation, ICRA 2021, Xi’an, China, May 30–June 5, 2021, pp. 9347–9353. IEEE (2021)

    Google Scholar 

  5. Park, C., Moghadam, P., Kim, S., Sridharan, S., Fookes, C.: Spatiotemporal camera-lidar calibration: a targetless and structureless approach. IEEE Robot. Autom. Lett. 5(2), 1556–1563 (2020)

    Google Scholar 

  6. Wang, Z., Wu, Y., Niu, Q.: Multi-sensor fusion in automated driving: a survey. IEEE Access 8, 2847–2868 (2020)

    Google Scholar 

  7. Pandey, G., McBride, J.R., Savarese, S., Eustice, R.M.: Automatic targetless extrinsic calibration of a 3d lidar and camera by maximizing mutual information. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22–26, 2012, Toronto, Ontario, Canada. AAAI Press (2012)

    Google Scholar 

  8. Yu, H., Zhen, W., Yang, W., Scherer, S.: Line-based 2-d-3-d registration and camera localization in structured environments. IEEE Trans. Instrum. Meas. 69(11), 8962–8972 (2020)

    Google Scholar 

  9. Xu, H., Lan, G., Wu, S., Hao, Q.: Online intelligent calibration of cameras and lidars for autonomous driving systems. In: 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, Auckland, New Zealand, October 27–30, 2019, pp. 3913–3920. IEEE (2019)

    Google Scholar 

  10. Koide, K., Oishi, S., Yokozuka, M., Banno, A.: General, single-shot, target-less, and automatic lidar-camera extrinsic calibration toolbox. CoRR, abs/2302.05094 (2023)

    Google Scholar 

  11. Yuan, C., Liu, X., Hong, X., Zhang, F.: Pixel-level extrinsic self calibration of high resolution lidar and camera in targetless environments. IEEE Robot. Autom. Lett. 6(4), 7517–7524 (2021)

    Google Scholar 

  12. Liao, Q., Liu, M.: Extrinsic calibration of 3d range finder and camera without auxiliary object or human intervention. In: 2019 IEEE International Conference on Real-time Computing and Robotics, RCAR 2019, Irkutsk, Russia, August 4–9, 2019, pp. 42–47. IEEE (2019)

    Google Scholar 

  13. Taylor, Z., Nieto, J.I.: Motion-based calibration of multimodal sensor arrays. In: IEEE International Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26–30 May, 2015, pp. 4843–4850. IEEE (2015)

    Google Scholar 

  14. Censi, A.: An ICP variant using a point-to-line metric. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, May 19–23, 2008, Pasadena, California, USA, pp. 19–25. IEEE (2008)

    Google Scholar 

  15. Yan, G., He, F., Shi, C., Cai, X., Li, Y.: Joint camera intrinsic and lidar-camera extrinsic calibration. CoRR, abs/2202.13708 (2022)

    Google Scholar 

  16. Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Fox, D., Kavraki, L.E., Kurniawati, H. (eds.) Robotics: Science and Systems X, University of California, Berkeley, USA, July 12–16 (2014)

    Google Scholar 

  17. Yuan, C., Wei, X., Liu, X., Hong, X., Zhang, F.: Efficient and probabilistic adaptive voxel mapping for accurate online lidar odometry. IEEE Robot. Autom. Lett. 7(3), 8518–8525 (2022)

    Google Scholar 

  18. Liu, Z., Zhang, F.: BALM: bundle adjustment for lidar mapping. IEEE Robot. Autom. Lett. 6(2), 3184–3191 (2021)

    Google Scholar 

  19. Quigley, M., Gerkey, B.P., Conley, K., Faust, J., Ng, A.Y.: Ros: an open-source robot operating system (2009)

    Google Scholar 

  20. Cui, J., Niu, J., Ouyang, Z., He, Y., Liu, D.: ACSC: automatic calibration for non-repetitive scanning solid-state lidar and camera systems. CoRR, abs/2011.08516 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Grant No. 42274037), the Aeronautical Science Foundation of China (Grant No. 2022Z022051001), and the National key research and development program of China (Grant No. 2020YFB0505804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, F., Zhu, J., Zhao, L. (2023). An Automatic and Efficient Calibration Method for LiDAR-Camera in Targetless Environments. In: Jia, Y., Zhang, W., Fu, Y., Wang, J. (eds) Proceedings of 2023 Chinese Intelligent Systems Conference. CISC 2023. Lecture Notes in Electrical Engineering, vol 1090. Springer, Singapore. https://doi.org/10.1007/978-981-99-6882-4_70

Download citation

Publish with us

Policies and ethics