Skip to main content

Thermal Performance Study of a Flat Plate Solar Air Heater Using Different Insulating Materials

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization (CoMSO 2022)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 373))

Included in the following conference series:

  • 56 Accesses

Abstract

This study focuses on evaluation of thermal interpretation of a flat plate solar air heater (SAH), one of the most important uses of solar thermal energy. In this work, a simulation using the MATLAB software is carried out to study the behaviour of various parameters which influences the thermal performance of the SAH. The range of parameters that are chosen are mass flow rate (m = 0.042–0.068 kg/s), thickness of insulation (ti = 0.02–0.08 m), absorber plate area (Ap = 1–2.5 m2), overall heat loss coefficient (0–10 W/m2) and collector tilt (β = 0°–60°). Also, an investigation is carried out on different insulating materials, namely thermocol, pine wood, sugarcane bagasse and bubble wrap that can be used to prevent losses from the bottom and side walls of the SAH. The simulation findings showed that as the mass flow rate rises, the heat transfer coefficient (h) increases linearly. When insulation thickness is increased the side and bottom loss coefficients fall, with materials having high thermal conductivity have higher side and bottom loss coefficients. Additionally, a linear relationship between the variation in collector efficiency factor (F) and insulation thickness (ti) is evident from this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sukhatme, S.P., Nayak, J.K.: Solar Energy, 4th Edition. McGraw-Hill Education, New Delhi (2017).

    Google Scholar 

  2. Saxena, A., El-Sebaii, A.A.: A thermodynamic review of solar air heaters. Renew. Sustain. Energy Rev. 43, 863–890 (2015). https://doi.org/10.1016/j.rser.2014.11.059

    Article  Google Scholar 

  3. Jia, B., Liu, F., Wang, D.: Experimental study on the performance of spiral solar air heater. Sol. Energy 182, 16–21 (2019). https://doi.org/10.1016/j.solener.2019.02.033

    Article  Google Scholar 

  4. Olivkar, P.R., Katekar, V.P., Deshmukh, S.S., Palatkar, S.V.: Effect of sensible heat storage materials on the thermal performance of solar air heaters: state-of-the-art review. Renew. Sustain. Energy Rev. 157, 112085 (2022). https://doi.org/10.1016/j.rser.2022.112085

    Article  Google Scholar 

  5. Singh, A.K., Agarwal, N., Saxena, A.: Effect of extended geometry filled with and without phase change material on the thermal performance of solar air heater. J. Energy Storage 39, 102627 (2021). https://doi.org/10.1016/j.est.2021.102627

    Article  Google Scholar 

  6. Abuşka, M., Kayapunar, A.: Experimental and numerical investigation of thermal performance in solar air heater with conical surface. Heat Mass Transf. 57, 1791–1806 (2021). https://doi.org/10.1007/s00231-021-03054-5

    Article  Google Scholar 

  7. Baissi, M.T., Brima, A., Aoues, K., Khanniche, R., Moummi, N.: Thermal behavior in a solar air heater channel roughened with delta-shaped vortex generators. Appl. Therm. Eng. 165, 113563 (2020). https://doi.org/10.1016/j.applthermaleng.2019.03.134

    Article  Google Scholar 

  8. Xiao, H., Dong, Z., Liu, Z., Liu, W.: Heat transfer performance and flow characteristics of solar air heaters with inclined trapezoidal vortex generators. Appl. Therm. Eng. 179, 115484 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115484

    Article  Google Scholar 

  9. Akhbari, M., Rahimi, A., Hatamipour, M.S.: Modeling and experimental study of a triangular channel solar air heater. Appl. Therm. Eng. 170, 114902 (2020). https://doi.org/10.1016/j.applthermaleng.2020.114902

    Article  Google Scholar 

  10. Bensaci, C.E., Moummi, A., De la Flor, F.J., Jara, E.A., Rincon-Casado, A., Ruiz-Pardo, A.: Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions. Renew. Energy 155, 1231–1244 (2020). https://doi.org/10.1016/j.renene.2020.04.017

    Article  Google Scholar 

  11. Singh, A.P., Singh, O.P.: Curved vs flat solar air heater: performance evaluation under diverse environmental conditions. Renew. Energy 145, 2056–2073 (2020). https://doi.org/10.1016/j.renene.2019.07.090

    Article  Google Scholar 

  12. Abuşka, M.: Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Appl. Therm. Eng. 131, 115–124 (2018). https://doi.org/10.1016/j.applthermaleng.2017.11.129

    Article  Google Scholar 

  13. Abdullah, A.S., El-Samadony, Y.A., Omara, Z.M.: Performance evaluation of plastic solar air heater with different cross-sectional configuration. Appl. Therm. Eng. 121, 218–223 (2017). https://doi.org/10.1016/j.applthermaleng.2017.04.067

    Article  Google Scholar 

  14. Skullong, S., Promvonge, P., Thianpong, C., Jayranaiwachira, N., Pimsarn, M.: Heat transfer augmentation in a solar air heater channel with combined winglets and wavy grooves on absorber plate. Appl. Therm. Eng. 122, 268–284 (2017). https://doi.org/10.1016/j.applthermaleng.2017.04.158

    Article  Google Scholar 

  15. Dutta, P. P.: Prospect of renewable thermal energy in black tea processing in assam: an investigation for energy resources and technology. Ph.D. dissertation, Tezpur University, India (2017)

    Google Scholar 

  16. Dutta, P.P., Kumar, A.: Development and performance study of solar air heater for solar drying applications. In: Solar drying technology: concept, design, testing, modeling, economics, and environment. Springer, Singapore, pp. 579–601 (2017). https://doi.org/10.1007/978-981-10-3833-4_21

  17. Dutta, P., Dutta, P.P., Kalita, P.: Thermal performance studies for drying of garcinia pedunculata in a free convection corrugated type of solar dryer. Renew. Energy 163, 599–612 (2021). https://doi.org/10.1016/j.renene.2020.08.118

    Article  Google Scholar 

  18. Sharma, A., Dutta, P.P.: Scientific and technological aspects of tea drying and withering: a review. Agric. Eng. Int. CIGR J. 20, 210–220 (2018)

    Google Scholar 

  19. Sharma, A., Dutta, A.K., Bora, M.K., Dutta, P.P.: Study of Energy Management in a Tea Processing Industry. In: AIP Conference Proceedings 2091, Assam, pp. 1–7 (2019). https://doi.org/10.1063/1.5096503

  20. Sharma, A., Dutta, P.P.: Exergy analysis of a solar thermal energy powered tea withering trough. Mater. Today Proc. 47(11), 3123–3128 (2021). https://doi.org/10.1016/j.matpr.2021.06.181

    Article  Google Scholar 

  21. Dutta, P.P., Goswami, P.: A comparative thermal performance studies between two different configurations of absorber plates in a double pass solar air heater using CFD and experimental analysis. Adv. Sci. Technol. 2, 178–183 (2021)

    Google Scholar 

  22. Dutta, P.P., Begum, S.S., Jangid, H., Goswami, A.P., Bardalai, M., Dutta, P.P.: Modeling and performance evaluation of a small solar parabolic trough collector (PTC) for possible purification of drained water. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.04.489

    Article  Google Scholar 

  23. Dutta, P.P., Kakati, H., Bardalai, M., Dutta, P.P.: Performance studies of trapezoidal, sinusoidal and square corrugated aluminium alloy (Almncu) plate ducts. Model. Simul. Optim. Smart Innov. Syst. Technol. 206, 751–774 (2021). https://doi.org/10.1007/978-981-15-9829-6_59

    Article  Google Scholar 

  24. Sharma, A., Dutta, P., Goswami, P., Dutta, P.P., Das, H.: Possibility of waste aluminum can for solar air heater through thermal performance studies. In: International Conference on Waste Management Towards Circular Economy, KIIT University (2019)

    Google Scholar 

  25. Somayeh, S.D., Shadi, M.: Optimization-decision making of roughened solar air heaters with impingement jets based on 3E analysis. Int. Commun. Heat Mass Transfer 205, 106607 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105742

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monoj Bardalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarma, P., Bardalai, M., Pratim Dutta, P., Das, H. (2024). Thermal Performance Study of a Flat Plate Solar Air Heater Using Different Insulating Materials. In: Das, B., Patgiri, R., Bandyopadhyay, S., Balas, V.E., Roy, S. (eds) Modeling, Simulation and Optimization. CoMSO 2022. Smart Innovation, Systems and Technologies, vol 373. Springer, Singapore. https://doi.org/10.1007/978-981-99-6866-4_43

Download citation

Publish with us

Policies and ethics