Skip to main content

Electronic and Optical Properties of Transparent Conducting Perovskite SrNbO3: Ab Initio Study

  • Conference paper
  • First Online:
Recent Advances in Functional Materials and Devices (AFMD 2023)

Abstract

The perovskite material strontium niobium oxide, also known as SrNbO3 (SNO), has good transparency and conductivity in the visible and near-ultraviolet spectrums. It is also widely used for electron transport, visible light absorption, and near-infrared plasmonics. High dielectric k values in SNO ultra-thin films are significant for applications like alternate gate dielectric in a variety of electronic device applications. We conducted ab initio (first-principle) analyses on several aspects of its electrical and optical characteristics using the widely used WIEN2k package, taking into account the aforementioned facts, popularity, and benefits in the optoelectronics arena. Utilizing a crystallographic information file (CIF), which crystallizes into a cubic lattice, the optimized crystal structure of SrNbO3 was discovered. The electrical properties are studied using Perdew-Burke-Ernzerhof (PBE) functionals, for the band structure and density of states (DOS), using generalized gradient approximation (GGA). Here, the material’s electronic band gap and total spin magnetic moment have been calculated, showing that the material is non-magnetic and has zero bandgaps revealing metallic character in bulk form at room temperature. From a physics standpoint, optical properties are computed, examined, and analyzed.

Authors Rakesh Kumar and Nitesh K. Chourasia contributed equally to the present research work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oka D, Hirose Y, Nakao S, Fukumura T, Hasegawa T (2015) Intrinsic high electrical conductivity of stoichiometric SrNbO3 epitaxial thin films. Phys Rev B 92:205102

    Article  Google Scholar 

  2. Mirjolet M, Kataja M, Hakala KT, Komissinskiy P, Alff L, Herranz G, Fontcuberta J (2021) Optical Plasmon Excitation in Transparent Conducting SrNbO3 and SrvO3 Thin Films. Advanced Optical Materials 9(17):2100520

    Article  CAS  Google Scholar 

  3. Sun C, SearlesJD (2014) Electronics, Vacancies, Optical Properties and Band Engineering of Red Photocatalyst SrNbO3: a computational investigation. The Journal of Physical Chemistry C 118(21), 11267–11270

    Google Scholar 

  4. Thapa S, Provence SR, Gemperline PT, Matthews BE, Spurgeon SR, Battles SL, Heald SM, Kuroda MA, Comes RB (2022) Surface stability of SrNbO3+δ grown by hybrid molecular beam epitaxy. APL Materials 10(9), 2166–532X

    Google Scholar 

  5. Park Y, Roth J, Oka D, Hirose Y, Hasegawa T, Paul A, Pogrebnyakov A, Gopalan V, Birol T, Engel-Herbert R (2020) SrNbO3 as a transparent conductor in the visible and ultraviolet spectra. Commun Phys 3(102)

    Google Scholar 

  6. Kumar S (2021) Theoretical and experimental studies of SrNbO3, SPAST Abs 1(01)

    Google Scholar 

  7. Wolfram T, Ellialtioglu S (2006) Electronic and optical properties of d-band Perovskites. Cambridge University Press

    Google Scholar 

  8. Bigi C, Orgiani P, Slawinska J, Fujii J, Irvine TJ, Picozzi S, Panaccione G, Vobornik I, Rossi G, Payne D, Borgatti F (2020) Direct insight into the band structure of SrNbO3. Physical Review Materials 4:025006

    Article  CAS  Google Scholar 

  9. Tariq S, Batool A, Faridi MA, Jamil MI, Mubarak AA, AkBAR NO (2017) Calculation of optical properties of SrNbO3 and SrNbO3.5 based on density functional theory DFT

    Google Scholar 

  10. Booth GH, Grüneis A, Kresse G, Alavi A (2013) Towards an exact description of electronic wavefunctions in real solids. Nature 493:365–370

    Article  CAS  Google Scholar 

  11. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100(31):12974–12980

    Article  CAS  Google Scholar 

  12. Fernandez MF (2019). The Born-Oppenheimer approximation. https://doi.org/10.13140/RG.2.2.21650.91840,PY:2019/03/08

    Article  Google Scholar 

  13. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3):B864

    Article  Google Scholar 

  14. Kristyán S, Pulay P (1994) Can (semi) local density functional theory account for the London dispersion forces? Chem Phys Lett 229(3):175–180

    Article  Google Scholar 

  15. Perdew JP, Yue W (1986) Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B Condense Matter 33(12):8800–8802

    Article  CAS  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  17. Lamichhane A (2021) First-principles density functional theory studies on perovskite materials. Dissertations. 1518

    Google Scholar 

  18. Blaha P, Schwarz K, Tran F, Laskowski R, Madsen GK, Marks LD (2020) WIEN2k: An APW+lo program for calculating the properties of solids. The Journal of Chemical Physics 152(7), 074101

    Google Scholar 

  19. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  CAS  Google Scholar 

  20. Materials Project Homepage. https://materialsproject.org/materials/mp-7006 from database version v2022.10.28

Download references

Acknowledgement

Aavishkar Katti wishes to acknowledge financial assistance from DST-SERB, Govt. of India through the Core Research Grant awarded (vide File No. CRG/2021/004740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aavishkar Katti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R. et al. (2024). Electronic and Optical Properties of Transparent Conducting Perovskite SrNbO3: Ab Initio Study. In: Krupanidhi, S.B., Sharma, A., Singh, A.K., Tuli, V. (eds) Recent Advances in Functional Materials and Devices. AFMD 2023. Springer Proceedings in Materials, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-99-6766-7_14

Download citation

Publish with us

Policies and ethics