Skip to main content

Exploration of Molybdenum Disulfide Nanostructures Through Raman Mode Detection

  • Conference paper
  • First Online:
Recent Advances in Functional Materials and Devices (AFMD 2023)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 37))

Included in the following conference series:

  • 97 Accesses

Abstract

Large number of active edge sites of MoS2 make it able in various energy applications. Structure and chemical environment of MoS2 influence its energy features. Interpretation of Raman scattering data of a sample shine light on to the chemical environment of atoms. Temperature of crystal, laser power, size, number of layers, strain, pressure, and defects of crystal can influence Raman scattering. The effects of such external factors on peak position, peak broadness, and intensity are reviewed here. This chapter attempts to explain the attributes and inference of Raman scattering data, which is a successful tool for examining the structure and chemical environment of MoS2. Different factors that are affecting the characteristic Raman peaks of MoS2 are being analyzed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li X, Zhu H (2015) Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics 1(1):33–44

    Article  Google Scholar 

  2. Debabrat K, Chetia L, Gazi A (2013) Ahmed. Investigation of Optical Properties of MoS2 Derivative with Tungsten.

    Google Scholar 

  3. Yakov E, Thomas J (2010) Risdon. Molybdenum disulfide in lubricant applications—A review. Proceedings of the 12 Lubricating Grease Conference.

    Google Scholar 

  4. Zhou, W et al. (2013) Synthesis of few‐layer MoS2 nanosheet‐coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1): 140–147

    Google Scholar 

  5. Kan M et al (2014) Structures and phase transition of a MoS2 monolayer. J Phys Chem C 118(3):1515–1522

    Article  CAS  Google Scholar 

  6. Tonndorf, P et al. (2013) Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Optics express 21(4): 4908–4916

    Google Scholar 

  7. Ataca C et al (2011) A comparative study of lattice dynamics of three-and two-dimensional MoS2. J Phys Chem C 115(33):16354–16361

    Article  CAS  Google Scholar 

  8. Zhang H et al. (2014) Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Optics express 22(6): 7249–7260.

    Google Scholar 

  9. Bozheyev F, Damir V, Renata N (2016) Pulsed cathodoluminescence and Raman spectra of MoS2 and WS2 nanocrystals and their combination MoS2/WS2 produced by self-propagating high-temperature synthesis. Applied Physics Letters 108(9): 093111.

    Google Scholar 

  10. Gołasa K et al (2014) Resonant Raman scattering in MoS2 From bulk to monolayer. Solid State Commun 197:53–56

    Article  Google Scholar 

  11. Eda G et al. (2011) Photoluminescence from chemically exfoliated MoS2. Nano letters 11(12): 5111–5116.

    Google Scholar 

  12. Jin-Mun Y et al. (2013) Efficient work-function engineering of solution-processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. J Materials Chemistry C 1(24): 3777–3783.

    Google Scholar 

  13. Jing-Yuan W et al. (2014) Photoluminescence of MoS2 prepared by effective grinding-assisted sonication exfoliation. J Nanomaterials.

    Google Scholar 

  14. Pagona G et al. (2015) Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid. Chemical Communications 51(65): 12950–12953.

    Google Scholar 

  15. Garadkar KM et al (2009) MoS2: Preparation and their characterization. J Alloy Compd 487(1–2):786–789

    Article  CAS  Google Scholar 

  16. Mingxiao Y et al. (2015) Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films. Photonics. 2(1). Multidisciplinary Digital Publishing Institute.

    Google Scholar 

  17. Chen C et al. Growth of large-area atomically thin MoS2 film via ambient pressure chemical vapor deposition. Photonics Research 3(4): 110–114.

    Google Scholar 

  18. Ponomarev EA et al (1998) Highly oriented photoactive polycrystalline MoS2 layers obtained by van der Waals rheotaxy technique from electrochemically deposited thin films. Sol Energy Mater Sol Cells 52(1–2):125–133

    Article  CAS  Google Scholar 

  19. Mak KF et al. (2010) Atomically thin MoS2 : a new direct-gap semiconductor. Physical review letters 105(13): 136805.

    Google Scholar 

  20. Britnell L et al. (2013) Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138): 1311–1314.

    Google Scholar 

  21. Hwang WS et al. (2013) Comparative study of chemically synthesized and exfoliated multilayer MoS2 field-effect transistors. Applied Physics Letters 102(4): 043116.

    Google Scholar 

  22. Patil RS (1999) Electrosynthesis of the molybdenum disulphide thin films and characterization. Thin Solid Films 340(1–2):11–12

    Article  CAS  Google Scholar 

  23. Pawar SM et al (2011) Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Curr Appl Phys 11(2):117–161

    Article  Google Scholar 

  24. Li H et al. (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Advanced Functional Materials 22(7): 1385–1390.

    Google Scholar 

  25. Sandoval, SJ et al. (1991) Raman study and lattice dynamics of single molecular layers of MoS 2. Physical Review B 44(8): 3955.

    Google Scholar 

  26. John AP, Thenapparambil A, Madhu T (2020) Strain-engineering the Schottky barrier and electrical transport on MoS2. Nanotechnology 31(27): 275703.

    Google Scholar 

  27. Terrones H et al. (2014) M. a. T. Nguyen, AL Elías, TE Mallouk, L. Balicas, MA Pimenta, and M. Terrones. Scientific Reports 4(10): 1038.

    Google Scholar 

  28. Zhang X et al. (2015) Measurement of lateral and interfacial thermal conductivity of single-and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS applied materials & interfaces 7(46): 25923–25929.

    Google Scholar 

  29. Zhao Y et al. (2013) Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano letters 13(3): 1007–1015.

    Google Scholar 

  30. Feng N et al. Magnetism by interfacial hybridization and p-type doping of MoS2 in Fe4N/MoS2 superlattices: a first-principles study. ACS applied materials & interfaces 6(6): 4587–4594.

    Google Scholar 

  31. Merki D et al. (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science 2(7): 1262–1267.

    Google Scholar 

  32. Smith RJ et al. (2011) Large‐scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Advanced materials 23(34): 3944–3948.

    Google Scholar 

  33. Kumar D et al. (2021) Davydov splitting, resonance effect and phonon dynamics in chemical vapor deposition grown layered MoS2. Nanotechnology 32(28): 285705.

    Google Scholar 

  34. Keng-Ku L et al. (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano letters 12(3): 1538–1544.

    Google Scholar 

  35. Kite SV et al (2017) Effect of annealing temperature on properties of molybdenum disulfide thin films. J Mater Sci: Mater Electron 28(21):16148–16154

    CAS  Google Scholar 

  36. Dobisz EA, Louay AE (2004) Nanoengineering: Fabrication, Properties, Optics, and Devices. SPIE.

    Google Scholar 

  37. Lee J-U, Kim M, Cheong H (2015) Raman spectroscopic studies on two-dimensional materials. Applied Microscopy 45(3):126–130

    Article  Google Scholar 

  38. Zhang X et al (2013) Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys Rev B 87(11):115413

    Article  Google Scholar 

  39. Shi Y, Li H, Li L-J (2015) Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem Soc Rev 44(9):2744–2756

    Article  CAS  Google Scholar 

  40. Wang Z et al. (2016) Chemical dissolution pathways of MoS2 nanosheets in biological and environmental media. Environmental science & technology 50(13): 7208–7217.

    Google Scholar 

  41. Kukucska G, Koltai J (2017) Theoretical investigation of strain and doping on the Raman spectra of monolayer MoS2. Physica status solidi (b) 254(11): 1700184

    Google Scholar 

  42. Chakraborty B et al. (2012) Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Physical Review B 85(16): 161403

    Google Scholar 

  43. Birmingham B et al. (2019) Probing the effect of chemical dopant phase on photoluminescence of monolayer MoS2 using in situ Raman microspectroscopy.  J Phys Chem C 123(25): 15738–15743.

    Google Scholar 

  44. Oh HM et al. (2016) Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy. ACS nano 10(5): 5230–5236.

    Google Scholar 

  45. Parkin WM et al. (2016) Raman shifts in electron-irradiated monolayer MoS2. ACS nano 10(4): 4134–4142.

    Google Scholar 

  46. Mak KF et al. (2012) Control of valley polarization in monolayer MoS2 by optical helicity. Nature nanotechnology 7(8): 494–498.

    Google Scholar 

  47. Raman CV. (1928) A change of wave-length in light scattering. Nature 121(3051): 619–619.

    Google Scholar 

  48. Raman CV, Kariamanikkam SK. (1928) The optical analogue of the Compton effect. Nature 121(3053): 711–711.

    Google Scholar 

  49. Raman CV (1944) The nature and origin of the luminescence of diamond. Proceedings of the Indian Academy of Sciences-Section A. 19(5) Springer India.

    Google Scholar 

  50. Raman CV (1928) A new radiation. Indian J Phys 2:387–398

    CAS  Google Scholar 

  51. Ferraro JR (2003) Introductory raman spectroscopy. Elsevier

    Google Scholar 

  52. Smith E, Geoffrey D (2019) Modern Raman spectroscopy: a practical approach. John Wiley & Sons v.

    Google Scholar 

  53. Kudelski A (2008) Analytical applications of Raman spectroscopy. Talanta 76(1):1–8

    Article  CAS  Google Scholar 

  54. Kneipp K et al. (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chemical reviews 99(10): 2957–2976.

    Google Scholar 

  55. Rostron P, Safa G, Dina G (2016) Raman spectroscopy, review. laser 21: 24.

    Google Scholar 

  56. Sadeghi-Jorabchi H et al (1990) (1990) “Determination of the total unsaturation in oils and margarines by Fourier transform Raman spectroscopy.“. J Am Oil Chem Soc 67(8):483–486

    Article  CAS  Google Scholar 

  57. Yang D, Ying Y (2011) Applications of Raman spectroscopy in agricultural products and food analysis: A review. Appl Spectrosc Rev 46(7):539–560

    Article  Google Scholar 

  58. Hanlon EB et al (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45(2):R1

    Article  CAS  Google Scholar 

  59. Wang Y, McCreery RL (1989) Evaluation of a diode laser/charge coupled device spectrometer for near-infrared Raman spectroscopy. Anal Chem 61(23):2647–2651

    Article  CAS  Google Scholar 

  60. Stiles PL et al. (2008) Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1: 601–626.

    Google Scholar 

  61. Moe YA et al. (2018) Probing evolution of local strain at MoS2-metal boundaries by surface-enhanced Raman scattering. ACS applied materials & interfaces 10(46): 40246–40254.

    Google Scholar 

  62. Kato R et al. (2019) Probing nanoscale defects and wrinkles in MoS2 by tip-enhanced Raman spectroscopic imaging. Applied Physics Letters 114(7): 073105.

    Google Scholar 

  63. Anbazhagan R et al. (2048) Surface-enhanced Raman scattering of alkyne-conjugated MoS2: a comparative study between metallic and semiconductor phases. Journal of Materials Chemistry C 6(5): 1071–1082.

    Google Scholar 

  64. Arora AK et al. (2007) Raman spectroscopy of optical phonon confinement in nanostructured materials. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 38(6): 604–617.

    Google Scholar 

  65. Gołasa K et al (2014) Multiphonon resonant Raman scattering in MoS2. Appl Phys Lett 104(9):092106

    Article  Google Scholar 

  66. Mignuzzi S et al. Effect of disorder on Raman scattering of single-layer MoS2. Physical Review B 91(19): 195411.

    Google Scholar 

  67. Balandin AA et al. (2008) Superior thermal conductivity of single-layer graphene. Nano letters 8(3): 902–907.

    Google Scholar 

  68. Islam MR et al. (2014) Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 6(17): 10033–10039.

    Google Scholar 

  69. Cai Y et al. (2014) Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Physical Review B 89(3): 035438.

    Google Scholar 

  70. Soni H, Jha PK (2015) Ab-initio study of dynamical properties of two dimensional MoS2 under strain. AIP Adv 5(10):107103

    Article  Google Scholar 

  71. Ghosh PN, Maiti CR (1983) Interlayer force and Davydov splitting in 2 H− MoS2. Physical Review B 28(4): 2237

    Google Scholar 

  72. Bandaru N et al. (2014) Effect of pressure and temperature on structural stability of MoS2.  J Phys Chem C 118(6): 3230–3235

    Google Scholar 

  73. Li X et al. (2016) Pressure and temperature-dependent Raman spectra of MoS2 film. Applied Physics Letters 109(24): 242101

    Google Scholar 

  74. Verble JL, Wieting TJ (1970) Lattice mode degeneracy in Mo S2 and other layer compounds. Phys Rev Lett 25(6):362

    Article  CAS  Google Scholar 

  75. Evarestov RA, Bandura AV (2018) Infrared and Raman active vibrational modes in MoS2-based nanotubes: Symmetry analysis and first-principles calculations. J Comput Chem 39(26):2163–2172

    Article  CAS  Google Scholar 

  76. Virsek M et al. (2009) Raman characterization of MoS2 microtube. physica status solidi (b) 246(11–12): 2782–2785

    Google Scholar 

  77. Zhang X et al (2016) Review on the Raman spectroscopy of different types of layered materials. Nanoscale 8(12): 6435–6450

    Google Scholar 

  78. Frey GL et al (1999) Raman and resonance Raman investigation of MoS2 nanoparticles. Physical Review B 60(4): 2883

    Google Scholar 

  79. Sun Y et al (2014) Probing local strain at MX2–metal boundaries with surface plasmon-enhanced raman scattering. Nano letters 14(9):5329–5334

    Google Scholar 

  80. Ding Y et al (2020) Raman tensor of layered MoS2. Optics letters 45(6):1313–1316

    Google Scholar 

  81. Najmaei S et al (2012) Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl Phys Lett 100(1):013106

    Article  Google Scholar 

  82. Plechinger G et al (2012) Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Applied Physics Letters 101(10): 101906

    Google Scholar 

  83. Luo X et al (2013) Anomalous frequency trends in MoS2 thin films attributed to surface effects. Physical Review B 88(7): 075320

    Google Scholar 

  84. Sahoo S et al (2013) Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2.  J Phys Chem C 117(17): 9042–9047

    Google Scholar 

  85. Wang Y et al (2013) Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9(17): 2857–2861

    Google Scholar 

  86. Huang S et al (2016) Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2. Nano letters 16(2):1435–1444

    Google Scholar 

  87. Chen S-Y et al (2015) Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers. Nano letters 15(4): 2526–2532

    Google Scholar 

  88. Thripuranthaka M et al (2014) Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl Phys Lett 104(8):081911

    Article  Google Scholar 

  89. Yalon E et al (2017) Temperature-dependent thermal boundary conductance of monolayer MoS2 by Raman thermometry. ACS applied materials & interfaces 9(49): 43013–43020.

    Google Scholar 

  90. Shen P et al (2021) Temperature and laser-power dependent Raman spectra of MoS2/RGO hybrid and few-layered MoS2. Physica B: Condensed Matter 604: 412693

    Google Scholar 

  91. Lanzillo NA et al (2013) Temperature-dependent phonon shifts in monolayer MoS2. Applied Physics Letters 103(9): 093102

    Google Scholar 

  92. Lin J et al (2011) Anharmonic phonon effects in Raman spectra of unsupported vertical graphene sheets. Physical Review B 83(12):125430

    Google Scholar 

  93. Taube A et al (2014) Temperature-dependent nonlinear phonon shifts in a supported MoS2 monolayer. ACS applied materials & interfaces 6(12): 8959–8963

    Google Scholar 

  94. Calizo I et al (2007) Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 7(9):2645–2649

    Article  CAS  Google Scholar 

  95. Yan Y et al (2013) Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 5(17): 7768–7771

    Google Scholar 

  96. Najmaei S, Pulickel MA, Lou J (2013) Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers. Nanoscale 5(20): 9758–9763

    Google Scholar 

  97. Feng T, Lindsay L, Ruan X (2017) Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys Rev B 96(16):161201

    Article  Google Scholar 

  98. Lin Z et al (2021) Thermal expansion coefficient of few-layer MoS2 studied by temperature-dependent Raman spectroscopy. Scientific reports 11(1): 7037

    Google Scholar 

  99. Ko PJ et al (2015) Laser power dependent optical properties of mono-and few-layer MoS2. Journal of nanoscience and nanotechnology 15(9): 6843–6846

    Google Scholar 

  100. Chang CH, Chan SS (1981) Infrared and Raman studies of amorphous MoS2 and poorly crystalline MoS2. J Catal 72(1):139–148

    Article  CAS  Google Scholar 

  101. Yan R et al (2014) Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS nano 8(1): 986–993

    Google Scholar 

  102. Zhang G-Y, Lan GX, Yu-Fang W (1991) Lattice vibration spectroscopy. Ch 4: 112–113

    Google Scholar 

  103. Lee C et al (2010) Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano 4(5): 2695–2700

    Google Scholar 

  104. Xu K et al (2017) Doping of two-dimensional MoS2 by high energy ion implantation. Semiconductor Science and Technology 32(12): 124002

    Google Scholar 

  105. Phuc HV et al (2018) Tuning the Electronic Properties, Effective mass and carrier mobility of MoS2 monolayer by strain engineering: first-principle calculations. Journal of Electronic Materials 47(1): 730–736

    Google Scholar 

  106. Peelaers H, Van de Walle CG (2012) Effects of strain on band structure and effective masses in MoS2. Physical Review B 86(24): 241401

    Google Scholar 

  107. Yun WS et al (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X= S, Se, Te). Physical Review B 85(3): 033305

    Google Scholar 

  108. Yue Q et al (2012) Mechanical and electronic properties of monolayer MoS2 under elastic strain. Physics Letters A 376(12–13): 1166–1170

    Google Scholar 

  109. Velicky M et al (2020) Strain and charge doping fingerprints of the strong interaction between monolayer MoS2 and gold. The journal of physical chemistry letters 11(15): 6112–6118

    Google Scholar 

  110. Saigal N et al (2018) Effect of lithium doping on the optical properties of monolayer MoS2. Applied Physics Letters 112(12): 121902

    Google Scholar 

  111. Cortijo-Campos S, Carlos P, De Andrés A (2022) Size effects in single-and few-layer MoS2 nanoflakes: impact on Raman phonons and photoluminescence. Nanomaterials 12(8): 1330

    Google Scholar 

  112. Bagnall AG et al (1980) Raman studies of MoS2 at high pressure. Physica B+ C 99(1–4): 343–346

    Google Scholar 

  113. Yan Y et al (2016) Interlayer coupling affected structural stability in ultrathin MoS2: an investigation by high pressure Raman spectroscopy.  J Phys Chem C 120(43): 24992–24998

    Google Scholar 

  114. Yang M et al (2017) Anharmonicity of monolayer MoS2, MoSe2, and WSe2: a Raman study under high pressure and elevated temperature. Applied Physics Letters 110(9): 093108

    Google Scholar 

  115. Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5(12):9703–9709

    Article  CAS  Google Scholar 

  116. Chi Z-H et al (2014) Pressure-induced metallization of molybdenum disulfide. Phys Rev Lett 113(3): 036802

    Google Scholar 

  117. Song QJ et al (2016) Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys Rev B 93(11):115409

    Article  Google Scholar 

  118. Sunitha AP (2018) Growth and characterization of MoS2 nanostructures for optoelectronic device applications, PhD. Thesis in Physics

    Google Scholar 

  119. Tsai M-L et al (2014) Monolayer MoS2 heterojunction solar cells. ACS nano 8(8): 8317–8322

    Google Scholar 

  120. Li L et al (2015) Raman shift and electrical properties of MoS2 bilayer on boron nitride substrate. Nanotechnology 26(29): 295702

    Google Scholar 

Download references

Acknowledgements

Nil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Sunitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sunitha, A., Nayana, K. (2024). Exploration of Molybdenum Disulfide Nanostructures Through Raman Mode Detection. In: Krupanidhi, S.B., Sharma, A., Singh, A.K., Tuli, V. (eds) Recent Advances in Functional Materials and Devices. AFMD 2023. Springer Proceedings in Materials, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-99-6766-7_13

Download citation

Publish with us

Policies and ethics