Skip to main content

Melatonin Detection and Quantification Techniques

  • Chapter
  • First Online:
Melatonin in Plants: A Regulator for Plant Growth and Development

Abstract

An indolic substance made from tryptophan is called melatonin (N-acetyl-5-methoxytryptamine). This substance, typically classified as a receptor or mammalian hormone, was first found in plants in 1995. Research into plant-based melatonin is an area that is expanding rapidly. Different plants contain different versions of the enzymes involved in the biosynthesis of melatonin. In the twentieth century it was discovered that several plant species can produce this molecule in large quantities and store it in specialized organs. According to endosymbiotic theory, the locations for melatonin biosynthesis in plants are chloroplasts and mitochondria. As plants similar metabolites with mammals, the metabolism of the sleep-inducing hormone melatonin in plants is less well understood. Although our understanding of the melatonin-producing enzymes in plants is still in its infancy, it has been found that plant cells are expected to be more flexible than animal cells. This chapter summarizes about melatonin discovery, evolution, and biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuna-Castroviejo D, Noguiera-Navarro MT, Reiter RJ, Escames G (2018) Melatonin actions in the heart: more than a hormone. Melaton Res 1:21–26. https://doi.org/10.32794/mr11250002

    Article  Google Scholar 

  • Alkozi HA, Sánchez JM, Doadrio AL, Pintor J (2017) Docking studies for melatonin receptors. Expert Opin Drug Discov 13:241–248. https://doi.org/10.1080/17460441.2018.1419184

    Article  CAS  PubMed  Google Scholar 

  • Altaf MA, Shahid R, Kumar R, Altaf MM, Kumar A, Khan LU, Saqib M, Azher Nawaz M, Saddiq B, Bahadur S, Tiwari RK, Lal MK, Naz S (2022) Phytohormones mediated modulation of abiotic stress tolerance and potential crosstalk in horticultural crops. J Plant Growth Regul 1–27:4724. https://doi.org/10.1007/S00344-022-10812-0

    Article  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Khan LU, Altaf MM, Jahan MS, Nawaz MA, Naz S, Shahid S, Lal MK, Tiwari RK, Shahid MA (2021) Protective mechanisms of melatonin against vanadium Phytotoxicity in tomato seedlings: insights into nutritional status, photosynthesis, root architecture system, and antioxidant machinery. J Plant Growth Regul 1–17:3300. https://doi.org/10.1007/s00344-021-10513-0

    Article  CAS  Google Scholar 

  • Altaf MA, Sharma N, Singh J, Samota MK, Sankhyan P, Singh B, Kumar A, Naz S, Lal MK, Tiwari RK, Kumar R (2023) Mechanistic insights on melatonin-mediated plant growth regulation and hormonal cross-talk process in solanaceous vegetables. Sci Hortic 308:111570. https://doi.org/10.1016/J.SCIENTA.2022.111570

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007) Melatonin promotes adventitious-and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42:147–152

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator?. Trend Plant Sci 24(1):38–48

    Google Scholar 

  • Axelrod J, Weissbach H (1960) Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 131(3409):1312

    Article  CAS  PubMed  Google Scholar 

  • Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61:426–437

    Article  CAS  PubMed  Google Scholar 

  • Badria FA (2002) Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J Med Food 5:153–157

    Article  CAS  PubMed  Google Scholar 

  • Baker PC, Quay WB, Axelrod J (1965) Development of hydroxyindole-O-methyl transferase activity in eye and brain of the amphibian, Xenopus laevis. Life Sci 4(20):1981–1987

    Article  CAS  PubMed  Google Scholar 

  • Behera B, Kancheti M, Raza MB, Shiv A, Mangal V, Rathod G, Altaf MA, Kumar A, Aftab T, Kumar R, Tiwari RK, Lal MK, Singh B (2022) Mechanistic insight on boron- mediated toxicity in plant Vis-a-Vis its mitigation strategies: a review. Int J Phytoremediation 25:9. https://doi.org/10.1080/15226514.2022.2049694

    Article  CAS  PubMed  Google Scholar 

  • Black C, Chevallier OP, Elliott CT (2016) The current and potential applications of ambient mass spectrometry in detecting food fraud. TrAC Trends Anal Chem 82:268–278

    Article  CAS  Google Scholar 

  • Bochkov DV, Sysolyatin SV, Kalashnikov AI, Surmacheva IA (2012) Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J Chem Biol 5:5–17

    Article  PubMed  Google Scholar 

  • Boutin JA (2016) Quinone reductase 2 as a promising target of melatonin therapeutic actions. Expert Opin Ther Targets 20:303–317

    Article  CAS  PubMed  Google Scholar 

  • Boutin JA, Ferry G (2019) Is there sufficient evidence that the melatonin binding site MT3 is Quinone reductase 2? J Pharmacol Exp Ther 368:59–65

    Article  CAS  PubMed  Google Scholar 

  • Boutin JA, Saunier C, Guenin SP, Berger S, Moulharat N, Gohier A et al (2008) Studies of the melatonin binding site location onto quinone reductase 2 by directed mutagenesis. Arch Biochem Biophys 477:12–19

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt S, Tan DX, Manchester LC, Hardeland R, Reiter RJ (2001) Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J Agric Food Chem 49:4898–4902

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HJ, Lee HY, Back K (2016) Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. J Pineal Res 60:65–73

    Article  CAS  PubMed  Google Scholar 

  • Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ et al (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62:e12387

    Article  Google Scholar 

  • Case A (2017) On the origin of superoxide dismutase: an evolutionary perspective of superoxide-mediated redox signaling. Antioxidants 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Casteilla L, Rigoulet M, Pénicaud L (2001) Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life 52:181–188

    Article  CAS  PubMed  Google Scholar 

  • Chanut E, Nguyen-Legros J, Versaux-Botteri C, Trouvin JH, Launay JM (1998) Determination of melatonin in rat pineal, plasma and retina by high-performance liquid chromatography with electrochemical detection. J Chromatogr B Biomed Sci Appl 709(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Huo Y, Tan DX et al (2003) Melatonin in Chinese medicinal herbs. Life Sci 73:19–26

    Article  CAS  PubMed  Google Scholar 

  • Choi GH, Lee HY, Back K (2017) Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. J Pineal Res 63:e12412

    Article  Google Scholar 

  • Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, Kumar A, Vanishree G, Kumar D, Bhardwaj V, Meena JK, Mangal V, Shelake RM, Kim JY, Pramanik D (2021) Salinity stress in potato: understanding physiological, biochemical and molecular responses. Life 11(6):545. https://doi.org/10.3390/life11060545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK, Lal MK (2022) Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. Planta 255(3):1–25. https://doi.org/10.1007/S00425-022-03845-Y

    Article  Google Scholar 

  • Devi R, Behera B, Raza MB, Mangal V, Altaf MA, Kumar R, Kumar A, Tiwari RK, Lal MK, Singh B (2022) An insight into microbes mediated heavy metal detoxification in plants: a review. J Soil Sci Plant Nutr 22(1):914–936

    Article  Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E et al (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    Article  CAS  PubMed  Google Scholar 

  • Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J (2010) International Union of Basic and Clinical Pharmacology. LXXV nomenclature, classification, and pharmacology of G protein coupled melatonin receptors. Pharmacol Rev 62:343–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson K, Östin A, Levin JO (2003) Quantification of melatonin in human saliva by liquid chromatography–tandem mass spectrometry using stable isotope dilution. J Chromatogr B 794(1):115–123

    Article  CAS  Google Scholar 

  • Erland LA, Murch SJ, Reiter RJ, Saxena PK (2015) A new balancing act: the many roles of melatonin and serotonin in plant growth and development. Plant Signal Behav 10:e1096469

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada-Rodgers L, Levy GN, Weber WW (1998) Characterization of a hormone response element in the mouse N-acetyltransferase 2 (Nat2∗) promoter. Gene Expr 7:13–24

    CAS  PubMed  Google Scholar 

  • Fourtillan JB, Gobin P, Faye B, Girault J (1994) A highly sensitive assay of melatonin at the femtogram level in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry. Biol Mass Spectrom 23(8):499–509

    Article  CAS  PubMed  Google Scholar 

  • Fuller PM, Gooley JJ, Saper CB (2006) Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythm 21(6):482–493

    Article  CAS  Google Scholar 

  • Galano A, Reiter RJ (2018) Melatonin and its metabolites vs. oxidative stress: from individual actions to collective protection. J Pineal Res 65:e12514

    Article  PubMed  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23:E530

    Article  Google Scholar 

  • Garcia-Parrilla MC, Cantos E, Troncoso AM (2009) Analysis of melatonin in foods. J Food Compos Anal 22:177–183

    Article  CAS  Google Scholar 

  • González-Gómez D, Lozano M, Fernández-León MF (2009) Eur Food Res Technol 229:223–229

    Article  Google Scholar 

  • Hardeland R (2016) Melatonin in plants—diversity of levels and multiplicity of functions. Front Plant Sci 7:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Hattori A, Migitaka H, Iigo M et al (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627–634

    CAS  PubMed  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137–142

    Article  PubMed  Google Scholar 

  • Hill SM, Frasch T, Xiang S, Yuan L, Duplessis T, Mao L (2009) Molecular mechanisms of melatonin anticancer effects. Integr Cancer Ther 8:337–346. https://doi.org/10.1177/1534735409353332

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Mazza G (2011) Application of LC and LCeMS to the analysis of melatonin and serotonin in edible plants. Crit Rev Food Sci Nutr 51:269–284

    Article  CAS  PubMed  Google Scholar 

  • Iinuma F, Hamase K, Matsubayashi S et al (1999) Sensitive determination of melatonin by precolumn derivatization and reversed-phase high-performance liquid chromatography. J Chromatogr A 835:67–72

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Rossoni M, Faoro F (2006) Melatonin content in grape: myth or panacea? J Sci Food Agric 86:1432–1438

    Article  CAS  Google Scholar 

  • Jan JE, Reiter RJ, Wasdell MB, Bax M (2009) The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. J Pineal Res 46(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G et al (2016) Update on melatonin receptors: IUPHAR review 20. Br J Pharmacol 173:2702–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johns NP, Johns J, Porasuphatana S, Plaimee P, Sae-Teaw M (2013) Dietary intake of melatonin from tropical fruit altered urinary excretion of 6-sulfatoxymelatonin in healthy volunteers. J Agric Food Chem 61:913–919

    Article  CAS  PubMed  Google Scholar 

  • Kanwar MK, Yu J, Zhou J (2018) Phytomelatonin: recent advances and future prospects. J Pineal Res 65:e12526

    Article  PubMed  Google Scholar 

  • Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX (2009) Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 15:43–50

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Kaundal P, Tiwari RK, Lal MK, Kumari H, Kumar R, Naga KC, Kumar A, Singh B, Sagar V, Sharma S (2023a) Development of reverse transcription recombinase polymerase amplification (RT-RPA): a methodology for quick diagnosis of potato Leafroll viral disease in potato. Int J Mol Sci 24:2511. https://doi.org/10.3390/ijms24032511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Kaundal P, Tiwari RK, Siddappa S, Kumari H, Lal MK, Naga KC, Sharma S, Sagar V, Kumar M (2022a) Establishment of a one-step reverse transcription recombinase polymerase amplification assay for the detection of potato virus S. J Virol Methods 307:114568. https://doi.org/10.1016/j.jviromet.2022.114568

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Lal MK, Dutt S, Raigond P, Changan SS, Tiwari RK, Chourasia KN, Mangal V, Singh B (2022c) Functional fermented probiotics, prebiotics, and synbiotics from non-dairy products: a perspective from nutraceutical. In: Molecular nutrition and food research, vol 66. Wiley, Hoboken, NJ, p 2101059. https://doi.org/10.1002/mnfr.202101059

    Chapter  Google Scholar 

  • Kumar A, Lal MK, Sahoo U, Sahoo SK, Sah RP, Tiwari RK, Kumar R, Sharma S (2023b) Combinatorial effect of heat processing and phytic acid on mineral bioavailability in rice grain. Food Chem Adv 2:100232. https://doi.org/10.1016/j.focha.2023.100232

    Article  Google Scholar 

  • Kumar A, Sahoo U, Lal MK, Tiwari RK, Lenka SK, Singh NR, Gupta OP, Sah RP, Sharma S (2022b) Biochemical markers for low glycemic index and approaches to alter starch digestibility in rice. J Cereal Sci 106:103501. https://doi.org/10.1016/j.jcs.2022.103501

    Article  CAS  Google Scholar 

  • Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Lal MK, Kumar A, Raigond P, Dutt S, Changan SS, Chourasia KN, Tiwari RK, Kumar D, Sharma S, Chakrabarti SK, Singh B (2021b) Impact of starch storage condition on glycemic index and resistant starch of cooked potato (Solanum tuberosum) tubers. Starch 73(1–2):1900281. https://doi.org/10.1002/star.201900281

    Article  CAS  Google Scholar 

  • Lal MK, Sharma N, Adavi SB, Sharma E, Altaf MA, Tiwari RK, Kumar R, Kumar A, Dey A, Paul V, Singh B (2022a) From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO2]. Plant Mol Biol 110:1–20. https://doi.org/10.1007/s11103-022-01274-9

    Article  CAS  Google Scholar 

  • Lal, M. K., Tiwari, R. K., Gahlaut, V., Mangal, V., Kumar, A., Singh, M. P., Paul, V., Kumar, S., Singh, B., & Zinta, G. (2022b). Physiological and molecular insights on wheat responses to heat stress. In Plant cell reports (Vol. 41, 3, pp. 501–518). Springer. Cham doi:https://doi.org/10.1007/s00299-021-02784-4

    Chapter  Google Scholar 

  • Lal MK, Tiwari RK, Kumar R, Naga KC, Kumar A, Singh B, Raigond P, Dutt S, Chourasia KN, Kumar D, Parmar V, Changan SS (2021a) Effect of potato apical leaf curl disease on glycemic index and resistant starch of potato (Solanum tuberosum L.) tubers. Food Chem 359:129939. https://doi.org/10.1016/j.foodchem.2021.129939

    Article  CAS  PubMed  Google Scholar 

  • Lauber JK, Boyd JE, Axelrod J (1968) Enzymatic synthesis of melatonin in avian pineal body: extraretinal response to light. Science 161(840):489–490

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Zawadzka A, Czarnocki Z, Reiter RJ, Back K (2016) Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J Pineal Res 61:470–478

    Article  CAS  PubMed  Google Scholar 

  • Lerner AB, Case JD, Mori W, Wright MR (1959) Melatonin in peripheral nerve. Nature 183(4678):1821

    Article  CAS  PubMed  Google Scholar 

  • Lerner B, Case JD, Takahashi Y, Lee TH, Mori W (1958a) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80(10):2587–2592

    Article  CAS  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958b) Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc 80:2587. https://doi.org/10.1021/ja01543a060

    Article  CAS  Google Scholar 

  • Liang C, Li A, Yu H, Li W, Liang C, Guo S et al (2017) Melatonin regulates root architecture by modulating auxin response in rice. Front Plant Sci 8:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Lochner A, Marais E, Huisamen B (2018) Melatonin and cardioprotection against ischaemia/reperfusion injury: what’s new? A review. J Pineal Res 65:e12490

    Article  PubMed  Google Scholar 

  • Lu J, Lau C, Lee MK, Kai M (2002) Simple and convenient chemiluminescence method for the determination of melatonin. Anal Chim Acta 455(2):193–198

    Article  CAS  Google Scholar 

  • Maharaj DS, Dukie SA (2002) The identification of the UV degradants of melatonin and their ability to scavenge free radicals. J Pineal Res 32:257–261

    Article  CAS  PubMed  Google Scholar 

  • Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59:403–419

    Article  CAS  PubMed  Google Scholar 

  • Manchester LC, Tan DX, Reiter RJ et al (2000) High levels of melatonin in the seeds of edible plants. Possible function in germ tissue protection. Life Sci 67:3023–3029

    Article  CAS  PubMed  Google Scholar 

  • Mannino G, Gentile C, Ertani A, Serio G, Bertea CM (2021a) Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods—a review. Agriculture 11:212

    Article  CAS  Google Scholar 

  • Mannino G, Pernici C, Serio G, Gentile C, Bertea CM (2021b) Melatonin and phytomelatonin: chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals—an overview. Int J Mol Sci 22(18):9996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulis L (1975) Symbiotic theory of the origin of eukaryotic organelles; criteria for proof. Symp Soc Exp Biol 29:21–38

    Google Scholar 

  • Menendez-Menendez J, Martinez-Campa C (2018) Melatonin: an anti-tumor agent in hormone-dependent cancers. Int J Endocrinol 2018:3271948. https://doi.org/10.1155/2018/3271948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercolini L, Mandrioli R, Raggi MA (2012) Content of melatonin and other antioxidants in grape-related foodstuffs: measurement using a MEPS-HPLC-F method. J Pineal Res 53:21–28

    Article  CAS  PubMed  Google Scholar 

  • Milenkovic-Andjelkovic AS, Andjelkovic MZ, Radovanovic AN, Radovanovic BC, Nikolic V (2015) Hem Ind 69:331–337

    Article  Google Scholar 

  • Muxel SM, Laranjeira-Silva MF, Carvalho-Sousa CE, Floeter-Winter LM, Markus RP (2016) The RelA/cRel nuclear factor-κB (NF-κB) dimer, crucial for inflammation resolution, mediates the transcription of the key enzyme in melatonin synthesis in RAW 264.7 macrophages. J Pineal Res 60:394–404

    Article  CAS  PubMed  Google Scholar 

  • Onaolapo AY, Onaolapo OJ (2018) Circadian dysrhythmia-linked diabetes mellitus: examining melatonin’s roles in prophylaxis and management. World J Diabetes 9:99–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Park M, Kang K, Park S, Back K (2008) Conversion of 5-hydroxytryptophan into serotonin by tryptophan decarboxylase in plants, Escherichia coli, and yeast. Biosci Biotech Bioch 72:2456–2458

    Article  CAS  Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: A peroxyl radical scavenger more effective than vitamin E. Life Sci 55:PL271–PL276. https://doi.org/10.1016/0024-3205(94)00666-0

  • Poeggeler B, Hardeland R (1994) Detection and quantification of melatonin in a dinoflagellate, Gonyaulax polyedra: solutions to the problem of methoxyindole destruction in non-vertebrate material. J Pineal Res 17:1–10

    Article  CAS  PubMed  Google Scholar 

  • Pshenichnyuk SA, Modelli A, Jones D, Lazneva EF, Komolov AS (2017) Low-energy electron interaction with melatonin and related compounds. J Phys Chem B 121:3965–3974

    Article  CAS  Google Scholar 

  • Radi A, Bekhiet GE (1998) Voltammetry of melatonin at carbon electrodes and determination in capsules. Bioelectrochem Bioenerg 45(2):275–279

    Article  CAS  Google Scholar 

  • Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017a) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci 74:3863–3881

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Rosales-Corral S, Zhou X, Tan DX (2017b) Role of SIRT3/SOD2 signaling in mediating the antioxidant actions of melatonin in mitochondria. Curr Trends Endocrinol 9:45–49

    Google Scholar 

  • Reiter RJ, Tan DX, Manchester LC, Pilar TM, Terron PM, Koppisepi S (2007) Medical implications of melatonin: receptor-mediated and receptor independent actions. Adv Med Sci 52:11–28

    CAS  PubMed  Google Scholar 

  • Reiter R, Tan DX, Rosales-Corral S, Manchester C (2013) The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives. Mini Rev Med Chem 13(3):373–384

    CAS  PubMed  Google Scholar 

  • Reiter JR, Tan DX, Zhou Z, Cruz HM, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reybier K, Perio P, Ferry G, Bouajila J, Delagrange P, Boutin JA et al (2011) Insights into the redox cycle of human quinone reductase 2. Free Radic Res 45:1184–1195

    Article  CAS  PubMed  Google Scholar 

  • Riga P, Medina S, García-Flores LA, Gil-Izquierdo Á (2014) Food Chem 156:347–352

    Article  CAS  PubMed  Google Scholar 

  • Rizzo V, Porta C, Moroni M, Scoglio E, Moratti R (2002) Determination of free and total (free plus protein-bound) melatonin in plasma and cerebrospinal fluid by high-performance liquid chromatography with fluorescence detection. J Chromatogr B 774(1):17–24

    Article  CAS  Google Scholar 

  • Rodriguez IR, Mazuruk K, Schoen TJ, Chader GJ (1994) Structural analysis of the human hydroxyindole-O-methyltransferase gene. Presence of two distinct promoters. J Biol Chem 269:31969–31977

    Article  CAS  PubMed  Google Scholar 

  • Setyaningsih W, Palma M, Barroso CG (2012) A new microwave-assisted extraction method for melatonin determination in rice grains. J Cereal Sci 56:340–346

    Article  CAS  Google Scholar 

  • Setyaningsih W, Saputro IE, Barbero GF, Palma M, Garcia-Barroso C (2015) J Agric Food Chem 63:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Chen K, Wei Y, He C (2016) Fundamental issues of melatonin mediated stress signaling in plants. Front Plant Sci 7:1124

    Article  PubMed  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H et al (2015) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers] by exogenous melatonin. J Exp Bot 66:681–694

    Article  CAS  PubMed  Google Scholar 

  • Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351:152–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stege PW, Sombra LL, Messina G, Martinez LD, Silva MF (2010) Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis 31(13):2242–2248

    Article  CAS  PubMed  Google Scholar 

  • Sturtz M, Cerezo AB, Cantos-Villar E, Garcia-Parrilla MC (2011) Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragaria ananassa). Food Chem 127:1329–1334

    Article  PubMed  Google Scholar 

  • Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Guo YD et al (2015) Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J Exp Bot 66(3):657–668

    Google Scholar 

  • Suofu V, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J et al (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci USA 114:E7997–E8006. https://doi.org/10.1073/pnas.1705768114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamtaji OR, Mobini M, Reiter RJ, Azami A, Gholami MS, Asemi Z (2018) Melatonin, a toll-like receptor inhibitor: current status and future perspectives. J Cell Physiol 2018:27698

    Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM et al (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev 85:607–623

    Article  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter R (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54:127–138

    Article  CAS  PubMed  Google Scholar 

  • Treberg JR, Braun K, Zacharias P, Kroeker K (2018) Multidimensional mitochondrial energetics: applications to the study of electron leak and hydrogen peroxide metabolism. Comp Biochem Physiol B Biochem Mol Biol 224:121–128

    Article  CAS  PubMed  Google Scholar 

  • Van Tassel DL, Roberts N, Lewy A et al (2001) Melatonin in plant organs. J Pineal Res 31:8–15

    Article  PubMed  Google Scholar 

  • Wang L, Feng C, Zheng X, Guo Y, Zhou F, Shan D, Liu X, Kong J (2017) Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J Pineal Res 63:e12429

    Article  Google Scholar 

  • Wang RX, Liu H, Xu L, Zhang H, Zhou RX (2015) Involvement of nuclear receptor RZR/RORgamma in melatonin-induced HIF-1alpha inactivation in SGC-7901 human gastric cancer cells. Oncol Rep 34:2541–2546. https://doi.org/10.3892/or.2015.4238

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H (2018) RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J Pineal Res 64:e12454

    Article  Google Scholar 

  • Yu Y, Bian L, Jiao Z, Yu K, Wan Y, Zhang G, Guo D (2019) Molecular cloning and characterization of a grapevine (Vitis vinifera L.) serotonin N-acetyltransferase (VvSNAT2) gene involved in plant defense. BMC Genomics 20:880

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Lv Y, Shi Y, Li T, Chen Y, Zhao D et al (2018) The role of phyto-melatonin and related metabolites in response to stress. Molecules 23:1887. https://doi.org/10.3390/molecules23081887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Qiu J, Zhou Y, Wang Y, Li H, Zhang T et al (2018) LIM homeobox transcription factor Isl1 is required for melatonin synthesis in the pig pineal gland. J Pineal Res 65:e12481

    Article  PubMed  Google Scholar 

  • Zhao Y, Xu L, Ding S, Lin N, Ji Q, Gao L et al (2017) Novel protective role of the circadian nuclear receptor retinoic acid-related orphan receptor-alpha in diabetic cardiomyopathy. J Pineal Res 62:e12378. https://doi.org/10.1111/jpi.12378

    Article  CAS  Google Scholar 

  • Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol 10:249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajotia, M.S. et al. (2023). Melatonin Detection and Quantification Techniques. In: Kumar, R., Altaf, M.A., Lal, M.K., Tiwari, R.K. (eds) Melatonin in Plants: A Regulator for Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-99-6745-2_2

Download citation

Publish with us

Policies and ethics