Skip to main content

Analysis of Various Video-Based Human Action Recognition Techniques Using Deep Learning Techniques

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics (FICTA 2023)

Abstract

Human action recognition is the ability to identify and naming activities using Artificial Intelligence (AI) from the collected movement raw information through variety of resources. Distinguishing human activities from images or video sequences is a challenging task because of problems, including background untidiness, biased occlusion, and scale changes. In this survey, a complete reassess of modern and high-tech research advances in the field of human motion categorization is explicated. In particular, human activity recognition methods are classified into four categories according to the methods used. Moreover, the review is prepared based on the published year of the article, the method used for research, and performance metrics. Finally, the research gaps and concerns of systems are explained for raising an efficient practice for human action recognition techniques using deep learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010)

    Article  Google Scholar 

  2. Liu, H., Shu, N., Tang, Q., Zhang, W.: Computational model based on neural network of visual cortex for human action recognition. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1427–1440 (2017)

    Article  MathSciNet  Google Scholar 

  3. Wan, S., Qi, L., Xu, X., Tong, C., Gu, Z.: Deep learning models for real-time human activity recognition with smartphones. Mobile Netw. Appl. 25(2), 743–755 (2020)

    Article  Google Scholar 

  4. Zhang, Z., Tao, D.: Slow feature analysis for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 436–450 (2012)

    Article  Google Scholar 

  5. Sun, L., Jia, K., Chan, T.H., Fang, Y., Wang, G., Yan, S.: DL-SFA: deeply-learned slow feature analysis for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2625–2632

    Google Scholar 

  6. Kokkinos, I.: Ubernet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6129–6138

    Google Scholar 

  7. Zolfaghari, M., Oliveira, G.L., Sedaghat, N., Brox, T.: Chained multi-stream networks exploiting pose, motion, and appearance for action classification and detection. In: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2904–2913.

    Google Scholar 

  8. Choutas, V., Weinzaepfel, P., Revaud, J., Schmid, C.: Potion: pose motion representation for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7024–7033

    Google Scholar 

  9. Luvizon, D.C., Picard, D., Tabia, H.: Multi-task deep learning for real-time 3D human pose estimation and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2752–2764 (2020)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Liu, J., Wang, G., Duan, L.Y., Abdiyeva, K., Kot, A.C.: Skeleton-based human action recognition with global context-aware attention LSTM networks. IEEE Trans. Image Process. 27(4), 1586–1599 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Sequential deep learning for human action recognition. In: International Workshop on Human Behavior Understanding, Nov 2011, pp. 29–39. Springer, Berlin, Heidelberg

    Google Scholar 

  13. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

    Article  Google Scholar 

  14. Guha, T., Ward, R.K.: Learning sparse representations for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1576–1588 (2011)

    Article  Google Scholar 

  15. Moniruzzaman, M., Yin, Z., He, Z., Qin, R., Leu, M.C.: Human action recognition by discriminative feature pooling and video segment attention model. IEEE Trans. Multimedia 24, 689–701 (2021)

    Article  Google Scholar 

  16. Chen, C., Jafari, R., Kehtarnavaz, N.: Improving human action recognition using fusion of depth camera and inertial sensors. IEEE Trans. Human-Mach. Syst. 45(1), 51–61 (2014)

    Article  Google Scholar 

  17. Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., Feng, D.D.: Deep convolutional neural networks for human action recognition using depth maps and postures. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1806–1819 (2018)

    Article  Google Scholar 

  18. Talha, S.A.W., Hammouche, M., Ghorbel, E., Fleury, A., Ambellouis, S.: Features and classification schemes for view-invariant and real-time human action recognition. IEEE Trans. Cogn. Dev. Syst. 10(4), 894–902 (2018)

    Article  Google Scholar 

  19. Liu, J., Akhtar, N., Mian, A.: Adversarial attack on skeleton-based human action recognition. IEEE Trans. Neural Netw. Learn. Syst. (2020)

    Google Scholar 

  20. Uddin, M.Z., Hassan, M.M., Almogren, A., Zuair, M., Fortino, G., Torresen, J.: A facial expression recognition system using robust face features from depth videos and deep learning. Comput. Electr. Eng. 63, 114–125 (2017)

    Article  Google Scholar 

  21. Hassan, M.M., Uddin, M.Z., Mohamed, A., Almogren, A.: A robust human activity recognition system using smartphone sensors and deep learning. Futur. Gener. Comput. Syst. 81, 307–313 (2018)

    Article  Google Scholar 

  22. Wang, H., Yuan, C., Hu, W., Ling, H., Yang, W. and Sun, C.: Action recognition using nonnegative action component representation and sparse basis selection. IEEE Trans. Image Process. 23(2), 570–581 (2013)

    Google Scholar 

  23. Yu, J., Gao, H., Yang, W., Jiang, Y., Chin, W., Kubota, N., Ju, Z.: A discriminative deep model with feature fusion and temporal attention for human action recognition. IEEE Access 8, 43243–43255 (2020)

    Google Scholar 

  24. Sahoo, S.P., Ari, S., Mahapatra, K., Mohanty, S.P.: HAR-depth: a novel framework for human action recognition using sequential learning and depth estimated history images. IEEE Trans. Emerg. Top. Comput. Intell. 5(5), 813–825 (2020)

    Article  Google Scholar 

  25. Nie, Q., Wang, J., Wang, X., Liu, Y.: View-invariant human action recognition based on a 3D bio-constrained skeleton model. IEEE Trans. Image Process. 28(8), 3959–3972 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wei, H., Kehtarnavaz, N.: Simultaneous utilization of inertial and video sensing for action detection and recognition in continuous action streams. IEEE Sens. J. 20(11), 6055–6063 (2020)

    Article  Google Scholar 

  27. Ronao, C.A., Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2020)

    Article  Google Scholar 

  28. Zhu, K., Wang, R., Zhao, Q., Cheng, J., Tao, D.: A cuboid CNN model with an attention mechanism for skeleton-based action recognition. IEEE Trans. Multimedia 22(11), 2977–2989 (2019)

    Article  Google Scholar 

  29. Cheng, J., Ren, Z., Zhang, Q., Gao, X., Hao, F.: Cross-modality compensation convolutional neural networks for RGB-D action recognition. IEEE Trans. Circuits Syst. Video Technol. 32(3), 1498–1509 (2021)

    Article  Google Scholar 

  30. Devanne, M., Wannous, H., Berretti, S., Pala, P., Daoudi, M., Del Bimbo, A.: 3-D human action recognition by shape analysis of motion trajectories on Riemannian manifold. IEEE Trans. Cybern. 45(7), 1340–1352 (2014)

    Article  Google Scholar 

  31. Ryu, J., Patil, A.K., Chakravarthi, B., Balasubramanyam, A., Park, S., Chai, Y.: Angular features-based human action recognition system for a real application with subtle unit actions. IEEE Access 10, 9645–9657 (2022)

    Article  Google Scholar 

  32. Du, Y., Fu, Y., Wang, L.: Representation learning of temporal dynamics for skeleton-based action recognition. IEEE Trans. Image Process. 25(7), 3010–3022 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Alekhya Jandhyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jandhyam, L.A., Rengaswamy, R., Satyala, N. (2023). Analysis of Various Video-Based Human Action Recognition Techniques Using Deep Learning Techniques. In: Bhateja, V., Carroll, F., Tavares, J.M.R.S., Sengar, S.S., Peer, P. (eds) Intelligent Data Engineering and Analytics. FICTA 2023. Smart Innovation, Systems and Technologies, vol 371. Springer, Singapore. https://doi.org/10.1007/978-981-99-6706-3_16

Download citation

Publish with us

Policies and ethics