Skip to main content

An Insight into Collagen-Based Nano Biomaterials for Drug Delivery Applications

  • Chapter
  • First Online:
Engineered Biomaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 237 Accesses

Abstract

In modern medicine, drug delivery is a broad field of research for the evolution of novel materials or carrier systems for effective therapeutic delivery of drugs as the controlled drug delivery is a challenge on the basis of solubility, bioavailability, cytotoxicity along with pharmacokinetic parameters.

Protein-based drug delivery systems (DDS) have shown promising results due to structural support, cell-targeted delivery, bioavailability, biocompatibility and non-immunogenicity, etc. Collagen as an important extracellular matrix component has attracted drug delivery-based research in recent years. Collagen based-hydrogels/composites/biofilms are excellent objects for drug delivery, tissue engineering, wound dressings and gene therapeutics etc. due to high encapsulating capacity, mechanically strong swollen structural network and efficient mass transfer properties. Some of the applications of collagen are the formation of microspheres and microneedles for drug delivery, formulation of nanoparticles (NPs) for gene delivery, development of pellets and tablets for protein delivery, formation of gels and combination with liposomes for sustained drug delivery, cancer treatment and collagen shields in ophthalmology.

DDS based on NPs display enhanced efficacy of drugs and improve the drug’s half-life, hydrophobic drug solubility and controlled/sustained drug release in the infected body regions. Stimuli-responsive NPs regulate drug biodistribution and reduce drug toxicity. Protein-based nanocomposites can be prepared through various physical and chemical methods like desolvation, emulsification, phase separation, electrospray, electrospinning and milling, etc. These methods have their operating ease and difficulties for the production of the desired quality of nanomaterials/composites.

Current Polymeric NPs systems are sensitive to stimuli such as temperature, light, pH, oxidizing/reducing agents, magnetic fields and enzymes which increases efficiency and specificity for various applications. Collagen with NPs results in stabilization of the nanoparticles and helps with entrapment of the drug, to attain steady and regulated drug release for ideal therapeutic reactions. Collagen NPs have advantage over other natural and synthetic polymeric NPs due to biocompatibility, biodegradability, low antigenicity, high contact surface and reduced toxicity.

Significant advancements have been achieved using collagen-based nano-DDS to deliver biomolecules with better efficacy at targeted sites. In spite of the substantial progress, collagen is still affected by low mechanical strength and high rate of degradability, which is a serious concern during clinical trials of targeting intracellular molecules like genes, drugs and growth factors, etc. In future, collagen-based nano-DDS will be the key player for the delivery of desired drugs/biomolecules at specific target for different medical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosen, H., Abribat, T.: The rise and rise of drug delivery. Nat. Rev. Drug Discov. 4, 381–385 (2005). https://doi.org/10.1038/nrd1721

    Article  Google Scholar 

  2. Verma, D., Gulati, N., Kaul, S., Mukherjee, S., Nagaich, U.: Protein based nanostructures for drug delivery. J. Pharm. 9285854 (2018). https://doi.org/10.1155/2018/9285854

  3. Jao, D., Xue, Y., Medina, J., Hu, X.: Protein-based drug-delivery materials. Materials (Basel) 10(5), 517 (2017). https://doi.org/10.3390/ma100505517

    Article  Google Scholar 

  4. Singh, R., Lillard, J.W.: Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86(3), 215–223 (2009). https://doi.org/10.1016/j.yexmp.2008.12.004

    Article  Google Scholar 

  5. Guo, D., Xie, G., Luo, J.: Mechanical properties of nanoparticles: basics and applications. J. Phys. D: Appl. Phys. 47(1) (2014). https://doi.org/10.1088/0022-3727/47/1/013001

  6. DeFrates, K., Markiewicz, T., Gallo, P., Rack, A., Weyhmiller, A., Jarmusik, B., et al.: Protein polymer-based nanoparticles: fabrication and medical applications. Int. J. Mol. Sci. 19(6), 1717 (2018). https://doi.org/10.3390/ijms19061717

    Article  Google Scholar 

  7. Cai, R., Chen, C.: The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31(45), 1805740 (2019). https://doi.org/10.1002/adma.201805740

    Article  Google Scholar 

  8. Ovais, M., Guo, M., Chen, C.: Tailoring nanomaterials for targeting tumor associated macrophages. Adv. Mater. 31(19), 1808303 (2019). https://doi.org/10.1002/adma.201808303

    Article  Google Scholar 

  9. Aljabali, A.A.A., Barclay, J.E., Lomonossoff, G.P., Evans, D.J.: Virus templated metallic nanoparticles. Nanoscale 2(12), 2596–2600 (2010). https://doi.org/10.1039/C0NR00525H

    Article  Google Scholar 

  10. Sainsbury, F., Saunders, K., Aljabali, A.A.A., Evans, D.J., Lomonossoff, G.P.: Peptide-controlled access to the interior surface of empty virus nanoparticles. ChemBioChem 12(16), 2435–2440 (2011). https://doi.org/10.1002/cbic.201100482

    Article  Google Scholar 

  11. Albu, M.G., Titorencu, I., Ghica, M.V.: Collagen-based drug delivery systems for tissue engineering. In: Pignatello, R. (ed.) Biomaterials Applications for Nanomedicine. IntechOpen 333–358 (2011). http://www.intechopen.com/books/biomaterialsapplications-for-anomedicine/collagen-based-drug-delivery-systems-for-tissue-engineering

  12. Zhang, Y., Sun, T., Jiang, C.: Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm. Sin. B 8(1), 34–50 (2018). https://doi.org/10.1016/j.apsb.2017.11.005

    Article  Google Scholar 

  13. Ahmed, M., Verma, A.K., Patel, R.: Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: a review. Sustain. Chem. Pharm. 18, 100315 (2020). https://doi.org/10.1016/j.scp.2020.100315

    Article  Google Scholar 

  14. Daza, J.H.U., Righetto, G.M., Chaud, M.V., Martins, V.C.A., Camargo, I.L.B.C., Plepis, A.M.G.: PVA/anionic collagen membranes as drug carriers of ciprofloxacin hydrochloride with sustained antibacterial activity and potential use in the treatment of ulcerative keratitis. J. Biomater. Appl. 35(3), 301–312 (2020). https://doi.org/10.1177/0885328220931733

    Article  Google Scholar 

  15. Geanaliu-Nicolae, R.-E., Andronescu, E.: Blended natural support materials-collagen based hydrogels used in biomedicine. Materials 13(24), 5641 (2020). https://doi.org/10.3390/ma13245641

    Article  Google Scholar 

  16. Maham, A., Tang, Z., Wu, H., Wang, J., Lin, Y.: Protein-based nanomedicine platforms for drug delivery. Small 5, 1706–1721 (2009). https://doi.org/10.1002/smll.200801602

    Article  Google Scholar 

  17. Lo, S., Fauzi, M.B.: Current update of collagen nanomatrials-fabrication, characterisation and its applications: a review. Pharmaceutics 13(3), 316 (2021). https://doi.org/10.3390/pharmaceutics13030316

    Article  Google Scholar 

  18. Makkithaya, K.N., Nadumane, S., Zhuo, G.Y., Chakrabarty, S., Mazumdar N. Nanoparticle based collagen biomaterials for wound healing. In: Mazumdar, N. (ed.) Collagen biomaterials. IntechOpen (2022). https://doi.org/10.5772/intechopen.104851

  19. Bhushan, B. (ed.): Springer Handbook of Nanotechnology. Springer, Berlin (2007)

    Google Scholar 

  20. Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., Langer, R.: Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8

    Article  Google Scholar 

  21. Naskar, A., Kim, K.S.: Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics 12(6), 499, 1–20 (2020). https://doi.org/10.3390/pharmaceutics12060499

  22. Wilson, A.: The formation of dry, wet, spunlaid and other types of nonwovens. In: Applications of Nonwovens in Technical Textiles, pp. 3–17 (2010). https://doi.org/10.1533/9781845699741.1.3

  23. Wang, X., Yan, Y., Yost, M.J., Fann, S.A., Dong, S., Li, X.: Nanomechanical characterization of micro/nanofiber reinforced type 1 collagens. J. Biomed. Mater. Res. Part A 83A, 130–135 (2007). https://doi.org/10.1002/jbm.a.31207

    Article  Google Scholar 

  24. Arun, A., Malrautu, P., Laha, A., Luo, H., Ramakrishna, S.: Collagen nanoparticles in drug delivery systems and tissue engineering. Appl. Sci. 11(23), 11369 (2021). https://doi.org/10.3390/app112311369

    Article  Google Scholar 

  25. Chak, V., Kumar, D., Visht, S.: A review on collagen based drug delivery systems. Int. J. Pharm. Teach. Pract. 4, 811–820 (2013)

    Google Scholar 

  26. Musazzi, U.M., Franzè, S., Minghetti, P., Casiraghi, A.: Emulsion versus nanoemulsion: how much is the formulative shift critical for a cosmetic product? Drug Deliv. Transl. Res. 8, 414–421 (2017). https://doi.org/10.1007/s13346-017-0390-7

    Article  Google Scholar 

  27. Singh, A.N., Yethiraj, A.: Liquid–liquid phase separation as the second step of complex coacervation. J. Phys. Chem. B 125(12), 3023–3031 (2021). https://doi.org/10.1021/acs.jpcb.0c07349

    Article  Google Scholar 

  28. Singh, Y., Meher, J.G., Raval, K., Khan, F.A., Chaurasia, M., Jain, N.K., et al.: Nanoemulsion: concepts, development and applications in drug delivery. J. Control. Release 252, 28–49 (2017). https://doi.org/10.1016/j.jconrel.2017.03.008

    Article  Google Scholar 

  29. Tan, S.F., Masoumi, H.R., Karjiban, R.A., Stanslas, J., Kirby, B.P., Basri, M., et al.: Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability. Ultrason. Sonochem. 29, 299–308 (2016). https://doi.org/10.1016/j.ultsonch.2015.09.015

    Article  Google Scholar 

  30. Dehghani, F., Farhadian, N., Golmohammadzadeh, S., Biriaee, A., Ebrahimi, A., Karimi, M.: Preparation, characterization and in vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur. J. Pharm. Sci. 96, 479–489 (2017). https://doi.org/10.1016/j.ejps.2016.09.033

    Article  Google Scholar 

  31. Gurpreet, K., Singh, S.K.: Review of Nanoemulsion Formulation and Characterization Techniques. Indian J. Pharm. Sci. 80, 781–789 (2018). https://doi.org/10.4172/pharmaceutical-sciences.1000422

    Article  Google Scholar 

  32. Souto, E.B., Fernandes, A.R., Martin-Gomes, C., Coutino, T.E., Durazzo, A., Lucarini, M., et al.: Nanomaterials for skin delivery of cosmeceuticls and pharmaceuticals. Appl. Sci. 10(5), 1594 (2020). https://doi.org/10.3390/app10051594

    Article  Google Scholar 

  33. Katz, L.M., Dewan, K., Bronaugh, R.L.: Nanotechnology in cosmetics. Appl. Sci. 10(5), 1594 (2020). https://doi.org/10.3390/app10051594

    Article  Google Scholar 

  34. Feng, L., Zhu, C., Yuan, H., Liu, L., Lv, F., Wang, S.: Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 42, 6620–6633 (2013). https://doi.org/10.1039/C3CS60036J

    Article  Google Scholar 

  35. Hong, S., Choi, D.W., Kim, H.N., Park, C.G., Lee, W.L., Park, H.H.: Protein-based nanoparticles as drug delivery systems. Pharmaceutics 12(7), 604 (2020). https://doi.org/10.3390/pharmaceutics12070604

    Article  Google Scholar 

  36. Truong-Le, V.L., August, J.T., Leong, K.W.: Controlled gene delivery by DNA–gelatin nanospheres. Hum. Gene Ther. 9, 1709–1717 (1998). https://doi.org/10.1089/hum.1998.9.12-1709

    Article  Google Scholar 

  37. Yoon, J., Kwag, J., Shin, T.J., Park, J., Lee, Y.M., Lee, Y., et al.: Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications. Adv. Mater. 26, 4559–4564 (2014). https://doi.org/10.1002/adma.201400906

    Article  Google Scholar 

  38. Law, J.X., Liau, L.L., Saim, A., Yang, Y., Idrus, R.: Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng. Regen. Med. 14(6), 699–718 (2017). https://doi.org/10.1007/s13770-017-0075-9

    Article  Google Scholar 

  39. Xue, J., Wu, T., Dai, Y., Xia, Y.: Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593

    Article  Google Scholar 

  40. Azimi, B., Maleki, H., Zavagna, L., De la Ossa, J.G., Linari, S., Lazzeri, A., Danti, S.: Bio-based electrospun fibers for wound healing. J. Funct. Biomater. 11(3), 67 (2020). https://doi.org/10.3390/jfb11030067

    Article  Google Scholar 

  41. Ghorbani, S., Eyni, H., Tiraihi, T., Asl, L.S., Soleimani, M., Atashi, A., et al.: Combined effects of 3D bone marrow stem cell-seeded wet-electrospun poly lactic acid scaffolds on full-thickness skin wound healing. Int. J. Polym. Mater. Polym. Biomater. 67(15), 905–912 (2018). https://doi.org/10.1080/00914037.2017.1393681

    Article  Google Scholar 

  42. Mbese, Z., Alven, S., Aderibigbe, B.A.: Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers (Basel) 13(24), 4368 (2021). https://doi.org/10.3390/polym13244368

    Article  Google Scholar 

  43. Haggag, Y.A., Faheem, A.M.: Evaluation of nano spray drying as a method for drying and formulation of therapeutic peptides and proteins. Front. Pharmacol. 6, 140 (2015). https://doi.org/10.389/fphar.2015.00140

    Google Scholar 

  44. Lee, S.H., Heng, D., Ng, W.K., Chan, H.K., Tan, R.B.: Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int. J. Pharm. 403, 192–200 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.012

    Article  Google Scholar 

  45. Gulfam, M., Kim, J.E., Lee, J.M., Ku, B., Chung, B.H.: Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir 28, 8216–8223 (2012). https://doi.org/10.1021/la300691n

    Article  Google Scholar 

  46. Boda, S.K., Li, X., Xie, J.: Electrospraying an enabling technology for pharmaceutical and biomedical applications: a review. J. Aerosol Sci. 125, 164–181 (2018). https://doi.org/10.1016/j.jaerosci.2018.04.002

    Article  Google Scholar 

  47. Nagarajan, U., Kawakami, K., Zhang, S., Chandrasekaran, B., Nair, B.U.: Fabrication of solid collagen nanoparticles using electrospray deposition. Chem. Pharm. Bull. 62, 422–428 (2014). https://doi.org/10.1248/cpb.c13-01004

    Article  Google Scholar 

  48. Kempf, M., Miyamura, Y., Liu, P.Y., Chen, A.C., Nakamura, H., Shimizu, H., et al.: A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials 32, 4782–4792 (2011). https://doi.org/10.1016/j.biomaterials.2011.03.023

    Article  Google Scholar 

  49. Mhetar, S.K., Ashok, N.A., Patil, R.L., Pawar, R.A., Patil, M.M., Shinde, H.T.: Cost effective ball milling machine for producing nanopowder. Int. Res. J. Eng. Technol. 4, 330–334 (2017)

    Google Scholar 

  50. Kumar, M., Xiong, X., Wan, Z., Sun, Y., Tsang, D.C., Gupta, J., et al.: Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Biores. Technol. 312, 123613 (2020). https://doi.org/10.1016/j.biortech.2020.123613

    Article  Google Scholar 

  51. Weber, C., Coester, C., Kreuter, J., Langer, K.: Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm. 194, 91–102 (2000). https://doi.org/10.1016/S0378-5173(99)00370-1

    Article  Google Scholar 

  52. Kandamachira, A., Selvam, S., Marimuthu, N., Kalarical, S.J., Nishter, N.F.: Collagen-nanoparticle interactions: type I collagen stabilization using functionalized nanoparticles. Soft Mater. 13, 59–65 (2014). https://doi.org/10.1080/1539445X.2015.1009550

    Article  Google Scholar 

  53. Choi, D., Heo, J., Park, J.H., Jo, Y., Jeong, H., Chang, M., et al.: Nano-film coatings onto collagen hydrogels with desired drug release. J. Ind. Eng. Chem. 36925, 326–333 (2016). https://doi.org/10.1016/j.jiec.2016.02.023

    Article  Google Scholar 

  54. Liu, G., Li, L., Huo, D., Li, Y., Wu, Y., Zeng, L., et al.: A VEGF delivery system targeting MI improves angiogenesis and cardiac function based on the tropism of MSCs and layer-by-layer self-assembly. Biomaterials 127, 117–131 (2017). https://doi.org/10.1016/j.biomaterials.2017.03.001

    Article  Google Scholar 

  55. Jeong, H., Hep, J., Son, B., Choi, D., Park, T.H., Chang, M., et al.: Intrinsic hydrophobic cairnlike multilayer films for antibacterial effect with enhanced durability. ACS Appl. Mater. Interfaces 7(47), 26117–26123 (2015). https://doi.org/10.1021/acsami.5b07613

    Article  Google Scholar 

  56. Morgan, P.W.: Interfacial polymerization. In: Encylopedia of Polymer Science and Technology. Wiley, New York (2011). https://doi.org/10.1002/0471440264.pst168

  57. Raaijmakers, M.J.T., Benes, N.E.: Current trends in interfacial polymerization chemistry. Prog. Polym. Sci. 63, 86–142 (2016). https://doi.org/10.1016/j.progpolymsci.2016.06.004

    Article  Google Scholar 

  58. Song, Y., Fan, J.B., Wang, S.: Recent progress in interfacial polymerization. Mater. Chem. Front. 1, 1028–1040 (2017). https://doi.org/10.1039/C6QM00325G

    Article  Google Scholar 

  59. Prasher, A., Loynd, C.M., Tuten, B.T., Frank, P.G., Chao, D., Berda, E.B.: Efficient fabrication of polymer nanoparticles via sonogashira cross-linking of linear polymers in dilute solution. J. Polym. Sci. Part A: Polym. Chem. 54, 209–217 (2015). https://doi.org/10.1002/pola.27942

    Article  Google Scholar 

  60. Kröger, A.P.P., Hamelmann, N.M., Juan, A., Lindhoud, S., Paulusse, J.M.J.: Biocompatible single-chain polymer nanoparticles for drug delivery-a dual approach. ACS Appl. Mater. Interfaces 10, 30946–30951 (2018). https://doi.org/10.1021/acsami.8b07450

    Article  Google Scholar 

  61. Hanlon, A.M., Chen, R., Rodriguez, K., Willis, C., Dickinson, J.G., Cashman, M., et al.: Scalable synthesis of single-chain nanoparticles under mild conditions. Macromolecules 50, 2996–3003 (2017). https://doi.org/10.1021/acs.macromol.7b00497

    Article  Google Scholar 

  62. Verso, F.L., Pomposo, J.A., Colmenero, J., Moreno, A.J.: Multi-orthogonal folding of single polymer chains into soft nanoparticles. Soft Matter 10, 4813–4821 (2014). https://doi.org/10.1039/C4SM00459K

    Article  Google Scholar 

  63. Wang, G., Uludag, H.: Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin. Drug Deliv. 5, 499–515 (2008). https://doi.org/10.1517/17425247.5.5.499

    Article  Google Scholar 

  64. Komlosh, A., Weinstein, V., Loupe, P., Hasson, T., Timan, B., Konya, A., et al.: Physicochemical and biological examination of two glatiramer acetate products. Biomedicines 7, 49 (2019). https://doi.org/10.3390/biomedicines7030049

    Article  Google Scholar 

  65. Posadas, I., Monteagudo, S., Ceña, V.: Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine 11, 833–849 (2016). https://doi.org/10.2217/nnm.16.15

    Article  Google Scholar 

  66. Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., et al.: Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8

    Article  Google Scholar 

  67. Akhmetova, A., Heinz, A.: Electrospinning proteins for wound healing purposes: opportunities and challenges. Pharmaceutics 13(1), 4 (2021). https://doi.org/10.3390/pharmaceutics13010004

    Article  Google Scholar 

  68. Oliveira, A.M., Guimarães, K.L., Cerize, N.N., Tunussi, A.S., Poço JG. Nano spray drying as an innovative technology for encapsulating hydrophilic active pharmaceutical ingredients (API). J. Nanomedicine Nanotechnol. 4 (2013). https://doi.org/10.4172/2157-7439.1000186

  69. Kim, M.T., Chen, Y., Marhoul, J., Jacobson, F.: Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug. Chem. 25, 1223–1232 (2014). https://doi.org/10.1021/bc5000109

    Article  Google Scholar 

  70. Bock, N., Woodruff, M.A., Hutmacher, D.W., Dargaville, T.R.T.R.: Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 3, 131–149 (2011). https://doi.org/10.3390/polym3010131

    Article  Google Scholar 

  71. Chelle, P., Yeung, C.H.T., Croteau, S.E., Lissick, J., Balasa, V., Ashburner, C., et al.: Development and validation of a population-pharmacokinetic model for Rurioctacog Alfa Pegol (Adynovate®): a report on behalf of the WAPPS-Hemo Investigators Ad Hoc Subgroup. Clin. Pharmacokinet. 59, 245–256 (2020). https://doi.org/10.1007/s40262-019-00809-6

    Article  Google Scholar 

  72. Lohcharoenkal, W., Wang, L., Chen, Y.C., Rojanasakul, Y.: Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed. Res. Int. 180549, 1–12 (2014). https://doi.org/10.1155/2014/180549

    Article  Google Scholar 

  73. Zhang, X., Wang, D., Zhou, Z., Ma, Y.: Robust low-rank tensor recovery with rectification and alignment. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 238–255 (2021). 10.1109/TPAMI.2019.29290

    Google Scholar 

  74. Garg, A., Visht, S., Sharma, P.K., Kumar, N.: Formulation, characterization and application on nanoparticle: a review. Der Pharm. Sin. 2(2), 17–26 (2011)

    Google Scholar 

  75. Kaszuba, M., Corbett, J., Watson, F.M., Jones, A.: High-concentration zeta potential measurements using light-scattering techniques. Philos. Trans. R. Soc. A 2010(368), 4439–4451 (1927). https://doi.org/10.1098/rsta.2010.0175

    Article  Google Scholar 

  76. Mistry, A., Glud, S.Z., Kjems, J., Randel, J., Howard, K.A., Stolnik, S., et al.: Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J. Drug Target 17, 543–552 (2009). https://doi.org/10.1080/10611860903055470

    Article  Google Scholar 

  77. Nitta, S.K., Numata, K.: Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 14, 1629–1654 (2013). https://doi.org/10.3390/ijms14011629

    Article  Google Scholar 

  78. Shalaby, M., Ghareeb, A.Z., Khedra, S.M., Mostafa, H.M., Saeed, H., Hamouda, D.: Nanoparticles of bioactive natural collagen for wound healing: experimental approach (2023). https://doi.org/10.1101/2023.02.21.529363

  79. Benyettou, F., Rezgui, R., Ravaux, F., Jaber, T., Blumer, K., Jouiad, M.: Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J. Mater. Chem. B 2015(3), 7237–7245 (2015). https://doi.org/10.1039/C5TB00994D

    Article  Google Scholar 

  80. Yildirimer, L., Thanh, N.T., Loizidou, M., Seifalian, A.M.: Toxicology and clinical potential of nanoparticles. Nano Today 6, 585–607 (2011). https://doi.org/10.1016/j.nantod.2011.10.001

    Article  Google Scholar 

  81. Subha, V., Kirubanandan, S., Ilangovan, R., Renganathan, S.: Silver nanoparticles impregnated nanocollagen as scaffold for soft tissue repair-synthesis, characterization, and in vitro investigation. Int. J. Med. Nano Res. 8(1), 1–9 (2021). https://doi.org/10.23937/2378-3664.1410034

    Article  Google Scholar 

  82. Cardoso, V.S., Quelemes, P.V., Amorin, A., Primo, F.L., Gobo, G.G., Tedesco A C. et al.: Collagen-based silver nanoparticles for biological applications: synthesis and characterization. J. Nanobiotechnology 12, 36 (2014). https://doi.org/10.1186/s12951-014-0036-6

  83. Roshanbinfar, K., Kolesnik-Gray, M., Angeloni, M., Schruefer, S., Fiedler, M., Schubert, D. et al.: Collagen hydrogel containing polyethylenimine-gold nanoparticles for drug release and enhanced beating properties of engineered cardiac tissues. Adv. Healthc. Mater. 2202408 (2023). https://doi.org/10.1002/adhm.202202408

  84. Terzopoulou, Z., Michopoulou, A., Palamidi, A., Koliakou, E., Bikiaris, D.: Preparation and evaluation of collagen-based patches as curcumin carriers. Polymers (Basel) 12(10), 2393 (2020). https://doi.org/10.3390/polym12102393

    Article  Google Scholar 

  85. Mohanraj, V., Chen, Y.: Nanoparticles-a review. Trop. J. Pharm. Res. 5, 561–573 (2006). https://doi.org/10.4314/tjpr.v5i1.14634

    Article  Google Scholar 

  86. Hoshyar, N., Gray, S., Han, H., Bao, G.: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11(6), 673–692 (2016). https://doi.org/10.2217/nnm.16.5

    Article  Google Scholar 

  87. McSweeney, M.D., Wessler, T., Price, L.S.L., Ciociola, E.C., Herity, L.B., Piscitelli, J.A., et al.: A minimal physiologically based pharmacokinetic model that predicts anti-PEG IgG-mediated clearance of PEGylated drugs in human and mouse. J. Control. Release 284, 171–178 (2018). https://doi.org/10.1016/j.jconrel.2018.06.002

    Article  Google Scholar 

  88. Breitenbach, M., Kamm, W., Hungere, K., Hund, H., Kissel, T.: Oral and nasal administration of tetanus toxoid loaded nanoparticles consisting of novel charged biodegradable polyesters for mucosal vaccination. In: Proceedings of the International Symposium on Controlled Release of Bioactive Materials, vol. 26, pp. 348–349 (1999)

    Google Scholar 

  89. Zhang, L., Beatty, A., Lu, L., Abdalrahman, A., Makris, T.M., Wang, G., et al.: Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functional nanoparticles. Mater. Sci. Eng. C 111, 110768 (2020). https://doi.org/10.1016/j.msec.2020.110768

    Article  Google Scholar 

  90. Knight, F.C., Gilchuk, P., Kumar, A., Becker, K.W., Sevimli, S., Jacobson, M.E., et al.: Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8+ lung-resident memory T cells. ACS Nano 13(10), 10939–11096 (2019). https://doi.org/10.1021/acsnano.9b00326

    Article  Google Scholar 

  91. Strand, M.S., Krasnick, B.A., Pan, H., Zhang, X., Bi, Y., Brooks, C., et al.: Precision delivery of RAS-inhibiting siRNA to KRAS driven cancer via peptide-based nanoparticles. Oncotarget 10(46), 4761–4775 (2019). https://doi.org/10.18632/oncotarget.27109

    Article  Google Scholar 

  92. Afsharzadeh, M., Hashemi, M., Mokhtarzadeh, A., Abnous, K., Ramezani, M.: Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif. Cells Nanomedicine Biotechnol. 46(6), 1095–1110 (2018). https://doi.org/10.1080/21691401.2017.1376675

    Article  Google Scholar 

  93. Volpatti, L.R., Matranga, M.A., Cortinas, A.B., Delcassian, D., Daneil, K.B., Langer, R., Anderson, D.G. et al.: Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano 14(1), 488–497 (2020). https://doi.org/10.1021/acsnano.9b06395

  94. Niu, Y., Yu, M., Hartono, S.B., Yang, J., Xu, H., Zhang, H., et al.: Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv. Mater. 25, 6233–6237 (2013). https://doi.org/10.1002/adma.201302737

    Article  Google Scholar 

  95. Awad, A., Shalaby, M., Batiha, G., Mady, R., Al-kuraishy, H., Shaheen, H.M.: Cytotoxicity effect assessment of theophylline loaded with collagen nanoparticles. Damanhour J. Veterinary Sci. 8(2), 5–10 (2022). https://doi.org/10.21608/djvs.2022.140639.1073

    Article  Google Scholar 

  96. Rathore, P., Arora, I., Rastogi, S., Akhtar, M., Singh, S., Samim, M.: Collagen–curcumin nanocomposites showing an enhanced neuroprotective effect against short term focal cerebral ischemia. RSC Adv. 10(4), 2241–2253 (2020). https://doi.org/10.1039/C9RA08508D

    Article  Google Scholar 

  97. Anwar, M.M., Shalaby, M.A., Saeed, H., Mostafa, H.M., Hamouda, D.G., Nounou, H.: Theophylline-encapsulated Nile Tilapia fish scale-based collagen nanoparticles effectively target the lungs of male Sprague–Dawley rats. Sci. Rep. 12(1), 1–12 (2022).

    Google Scholar 

  98. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Rudzinski, W.E.: Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001). https://doi.org/10.1016/S0168-3659(00)00339-4

    Article  Google Scholar 

  99. Pritchard, E.M., Hu, X., Finley, V., Kuo, C.K., Kaplan, D.L.: Effect of silk protein processing on drug delivery from silk films. Macromol. Biosci. 13, 311–320 (2013). https://doi.org/10.1002/mabi.201200323

    Article  Google Scholar 

  100. Champion, J.A., Katare, Y.K., Mitragotri, S.: Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121, 3–9 (2007). https://doi.org/10.1016/j.jconrel.2007.03.022

    Article  Google Scholar 

  101. Kundu, B., Soundrapandian, C., Nandi, S.K., Mukherjee, P., Dandapat, N., Roy, S., et al.: Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm. Res. 27, 1659–1676 (2010). https://doi.org/10.1007/s11095-010-0166-y

    Article  Google Scholar 

  102. Tessmar, J.K., Göpferich, A.M.: Matrices and scaffolds for protein delivery in tissue engineering. Adv. Drug Deliv. Rev. 59, 274–291 (2007). https://doi.org/10.1016/j.addr.2007.03.020

    Article  Google Scholar 

  103. Solorio, L., Zwolinski, C., Lund, A.W., Farrell, M.J., Stegemann, J.P.: Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J. Tissue Eng. Regen. Med. 4, 514–523 (2010). https://doi.org/10.1002/term.267

    Article  Google Scholar 

  104. Kukkar, P.M., Savkare, A.D., Bhavsar, M.R., Gholap, V.D.: A review on nanoparticle cross-linked collagen shield for sustained delivery of drug in glaucoma. Int. J. Pharm. Sci. Res. 8, 2731–2739 (2017). https://doi.org/10.13040/IJPSR.0975-8232.8(7).2731-39

    Article  Google Scholar 

  105. Choi, J., Park, H., Kim, T., Jeong, Y., Oh, M.H., Hyeon, T., et al.: Engineered collagen hydrogels for the sustained release of biomolecules and imaging agents: promoting the growth of human gingival cells. Int. J. Nanomed. 9(1), 5189–5201 (2014). https://doi.org/10.2147/IJN.S71304

    Article  Google Scholar 

  106. Verma, A.K.: Collagen-based biomaterial as drug delivery. In: Mazumder, N., Chakrabarty S. (eds.) Collagen Biomaterials. IntechOpen 1–40 (2022). https://doi.org/10.5772/intechopen.103063

  107. Lin, J., Li, C., Zhao, Y., Hu, Z., Zhang, L.M.: Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl. Materi. Interfaces 4(2), 1050–1057 (2012). https://doi.org/10.1021/am201669z

  108. Karri, V.V.S.R., Kuppusamy, G., Taluri, S.V., Mannemala, S.S., Kollipara, R., Wadhwani, A.D., et al.: Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 93, 1519–1529 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.038

    Article  Google Scholar 

  109. Le, V.M., Lang, M.D., Shi, W.B., Liu, J.W.: A collagen-based multicellular tumor spheroid model for evaluation of the efficiency of nanoparticle drug delivery. Artif. Cells Nanomedicine Biotechnol. 44(2), 540–544 (2016). https://doi.org/10.3109/21691401.2014.968820

    Article  Google Scholar 

  110. Ghorbani, M., Nezhad-Mokhtari, P., Ramazani, S.: Aloe vera-loaded nanofibrous scaffold based on zein/polycaprolactone/collagen for wound healing. Int. J. Biol. Macromol. 153, 921–930 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.036

    Article  Google Scholar 

  111. Deepa, C., Suresh, G., Devagi, P., Kowsalya, A., Kavitha, K., Ramesh, B.: Evaluation of the antibacterial activity of silver nanoparticles, doxycycline, collagen and their amalgamation – an in vitro study. Mater. Today: Proc. 43(5), 3050–3053 (2021). https://doi.org/10.1016/j.matpr.2021.01.396

    Article  Google Scholar 

  112. Ma, S., Adayi, A., Liu, Z., Li, M., Wu, M., Xiao, L., et al.: Asymmetric collagen/chitosan membrane containing minocycline-loaded chitosan nanoparticles for guided bone regeneration. Sci. Rep. 6, 31822 (2016). https://doi.org/10.1038/srep31822

    Article  Google Scholar 

  113. Lee, D., Wufuer, M., Kim, I., Choi, T.H., Kim, B.J., Jung, H.G., et al.: Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci. Rep. 11(1), 746 (2021). https://doi.org/10.1038/s41598-020-80608-3

    Article  Google Scholar 

  114. Pourjavadi, A., Doroudian, M.: Synthesis and characterization of semiconductive nanocomposite based on hydrolyzed collagen and in vitro electrically controlled drug release study. Polymer 76, 287–294 (2015). https://doi.org/10.1016/j.polymer.2015.06.050

    Article  Google Scholar 

  115. Tezgel, Ö., Distasio, N., Laghezza-Masci, V., Taddei, A.R., Szarpak-Jankowska, A., Auzély-Velty, R., et al.: Collagen scaffold-mediated delivery of NLC/siRNA as wound healing materials. J. Drug Deliv. Sci. Technol. 55, 101421 (2020). https://doi.org/10.1016/j.jddst.2019.101421

    Article  Google Scholar 

  116. Anandhakumar, S., Krishnamoorthy, G., Ramkumar, K.M., Raichur, A.M.: Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: an effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater. Sci. Eng. C 70(1) (2017). https://doi.org/10.1016/j.msec.2016.09.003

  117. Li, R., Xu, Z., Jiang, Q., Zheng, Y., Chen, Z., Chen, X.: Characterization and biological evaluation of a novel silver nanoparticle-loaded collagen-chitosan dressing. Regen. Biomater. 7(4), 371–380 (2020). https://doi.org/10.1093/rb/rbaa008

    Article  Google Scholar 

  118. Bettini, S., Bonfrate, V., Syrgiannis, Z., Sannino, A., Salvatore, L., Madaghiele, M., et al.: Biocompatible collagen paramagnetic scaffold for controlled drug release. Biomacromol 16(9), 2599–2608 (2015). https://doi.org/10.1021/acs.biomac.5b00829

    Article  Google Scholar 

  119. Choi, M., Chung, J.H., Cho, Y., Hong, B.Y., Hong, J.: Nano-film modification of collagen hydrogels for controlled growth factor release. Chem. Eng. Sci. 137, 626–630 (2015). https://doi.org/10.1016/j.ces.2015.07.011

    Article  Google Scholar 

  120. Minakuchi, Y., Takeshita, F., Kosaka, N., Sasaki, H., Yamamoto, Y., Kouno, M., et al.: Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 32(13), e109 (2004). https://doi.org/10.1093/nar/gnh093

    Article  Google Scholar 

  121. Ramírez, O.J., Alvarez, S., Contreras-Kallens, P., Barrera, N.P., Aguayo, S., Schuh, C.M.A.P.: Type I collagen hydrogels as a delivery matrix for royal jelly derived extracellular vesicles. Drug Deliv. 27(1), 1308–1318 (2020). https://doi.org/10.1080/10717544.2020.1818880

    Article  Google Scholar 

  122. Wang, Y., Zhang, C.L., Zhang, Q., Li, P.: Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing. Int. J. Nanomed. 6, 667–676 (2011). https://doi.org/10.2147/IJN.S17547

    Article  Google Scholar 

  123. Liu, S.J., Kau, Y.C., Chou, C.Y., Chen, J.K., Wu, R.C., Yeh, W.L.: Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J. Membr. Sci. 355(1–2), 53–59 (2010). https://doi.org/10.1016/j.memsci.2010.03.012

    Article  Google Scholar 

  124. Mondal, S., Hoang, G., Manivasagan, P., Moorthy, M.S., Phan, T.T.V., Kim, H.H., et al.: Rapid microwave-assisted synthesis of gold loaded hydroxyapatite collagen nano-bio materials for Drug Deliv. and tissue engineering application. Ceram. Int. 45(3), 2977–2988 (2019). https://doi.org/10.1016/j.ceramint.2018.10.016

    Article  Google Scholar 

  125. Wei, D., Sun, J., Yang, Y., Wu, C., Chen, S., Guo, Z., et al.: Cell alignment guided by nano/micro oriented collagen fibers and the synergistic vascularization for nervous cell functional expression. Mater. Today Chem. 8, 85–95 (2018). https://doi.org/10.1016/j.mtchem.2018.03.001

    Article  Google Scholar 

  126. Mohamadi, F., Ebrahimi-Barough, S., Nourani, M.R., Derakhshan, M.A., Goodarzi, V., Nazockdast, M.S., et al.: Electrospun nerve guide scaffold of poly (ε-caprolactone)/collagen/nanobioglass: an in vitro study in peripheral nerve tissue engineering. J. Biomed. Mater. Res. Part A 105A, 1960–1972 (2017). https://doi.org/10.1002/jbm.a.36068

    Article  Google Scholar 

  127. Ghavimi, M.A., Shahabadi, A.B., Jarolmasjed, S., Memar, M.Y., Dizaj, S.M., Sharifi, S.: Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci. Rep. 10, 18200 (2020). https://doi.org/10.1038/s41598-020-75454-2

    Article  Google Scholar 

  128. Ahmadian, S., Ghorbani, M., Mahmoodzadeh, F.: Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. Int. J. Biol. Macromol. 162, 1555–1565 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.059

    Article  Google Scholar 

  129. Lee, C.H., Chang, S.H., Chen, W.J., Hung, K.C., Lin, Y.H., Liu, S.J., et al.: Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. J. Colloid Interface Sci. 439, 88–97 (2015). https://doi.org/10.1016/j.jcis.2014.10.028

    Article  Google Scholar 

  130. Lai, H.J., Kuan, C.h., Wu, H.C., Tsai, J.C., Chen, T.M., Hseish DJ et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 10(10), 4156-4166 (2014). https://doi.org/10.1016/j.actbio.2014.05.001

  131. Kandhasamy, S., Perumal, S., Madhan, B., Umamaheswari, N., Banday, J.A., Perumal, P.T., et al.: Synthesis and fabrication of collagen-coated ostholamide electrospun nanofiber scaffold for wound healing. ACS Appl. Mater. Interfaces 9(10), 8556–8568 (2017). https://doi.org/10.1021/acsami.6b16488

    Article  Google Scholar 

  132. Hou, J., Chen, L., Zhou, M., Li, J., Liu, J., Fang, H., et al.: Multi-layered polyamide/collagen scaffolds with topical sustained release of N-acetylcysteine for promoting wound healing. Int. J. Nanomed. 15, 1349–1361 (2020). https://doi.org/10.2147/IJN.S232190

    Article  Google Scholar 

  133. Yao, C.H., Chen, K.Y., Chen, Y.S., Li, S.J., Huang, C.H.: Lithospermi radix extract-containing bilayer nanofiber scaffold for promoting wound healing in a rat model. Mater. Sci. Eng. C 96, 850–858 (2019). https://doi.org/10.1016/j.msec.2018.11.053

    Article  Google Scholar 

  134. Tort, S., Acartürk, F., Beşikci, A.: Evaluation of three-layered doxycycline-collage loaded nanofiber wound dressing. Int. J. Pharm. 529(1–2), 642–653 (2017). https://doi.org/10.1016/j.ijpharm.2017.07.027

    Article  Google Scholar 

  135. Khodir, W.K.W.A., Razak, A.H.A., Ng, M.H., Guarino, V., Susanti, D.: Encapsulation and characterization of gentamicin sulfate in the collagen added electrospun nanofibers for skin regeneration. J. Funct. Biomater. 9(2), 36 (2018). https://doi.org/10.3390/jfb9020036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A.K. (2023). An Insight into Collagen-Based Nano Biomaterials for Drug Delivery Applications. In: Malviya, R., Sundram, S. (eds) Engineered Biomaterials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-6698-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6698-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6697-4

  • Online ISBN: 978-981-99-6698-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics