Skip to main content

Transdermal Drug Delivery Systems

  • Chapter
  • First Online:
Advanced Drug Delivery

Abstract

The transdermal drug delivery systems, also known as TDDS, are the most effective alternative to the oral and parenteral routes to deliver therapeutic molecules across the skin in order to produce systemic effects. TDDS possess several benefits such as self-administrable nature, escape of first-pass metabolism, minimize dose, less side effects, better dosage regimen, termination of dosing at any time, absence of gastric irritation, and improved patient compliance. In the earlier scenario, TDDS was indicated only for the transdermal patches. These patches include matrix devices, reservoir type, micro-reservoir forms, and adhesive controlled systems. In the present situation, various state of the art technologies were introduced in advancing TDDS utilization. For passive drug delivery, nanovesicles, polymeric nanocarriers adhesive-controlled and nanoemulsions were implemented. Active delivery strategies include iontophoresis, sonophoresis, electroporation, photomechanical waves, thermal ablation, and microneedle technology. The earlier transdermal patches are utilized only to deliver the small molecule drugs whereas the latest versions of TDDS provide a comprehensive selection of molecules from low molecular weight drugs to macromolecule proteins. Among them, microneedles are proven to deliver several macromolecular biomolecules such as vaccines, extracted proteins, and whole viral particles. In this chapter, we are going to know about the basics of TDDS such as mechanisms of skin permeation, factors influencing transdermal permeation, basic ingredients for transdermal patches, categories of formulations, and permeation promoters. In addition to the basic knowledge, we are also about to explore the transdermal patches available in the market and the latest technologies introduced in TDDS. In near future, we can expect several new innovative tools to be marked within the context of the transdermal delivery of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar N et al (2020) Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomed Tech (Berl) 65(3):243–272

    Article  CAS  PubMed  Google Scholar 

  • Al Hanbali OA et al (2019) Transdermal patches: design and current approaches to painless drug delivery. Acta Pharm 69(2):197–215

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Shabbir M, Nabeel Shahid M (2015) The structure of skin and transdermal drug delivery system—a review. Res J Pharm Technol 8:103

    Google Scholar 

  • Al-Khamis KI, Davis SS, Hadgraft J (1986) Microviscosity and drug release from topical gel formulations. Pharm Res 3(4):214–217. https://doi.org/10.1023/A:1016386613239

    Article  CAS  PubMed  Google Scholar 

  • Alkilani AZ, Nasereddin J (2022) Beneath the skin: a review of current trends and future prospects of transdermal drug delivery systems. 14(6)

    Google Scholar 

  • Allen LV, Popovich NG, Ansel HC (2012) Ansel's pharmaceutical dosage forms and drug delivery systems

    Google Scholar 

  • Andrews SN, Jeong E, Prausnitz MR (2013) Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res 30(4):1099–1109. https://doi.org/10.1007/s11095-012-0946-7

    Article  CAS  PubMed  Google Scholar 

  • Arijit D, Sibaji G, Biplab KD, Sudip D (2010) A novel technique for treating the type ll diabetes by transdermal patches prepared by using multiple polymer complexes. Int J Pharma Res Dev 9:195–204

    Google Scholar 

  • Barry BW (1988) Action of skin penetration enhancers? The lipid protein partitioning theory. Int J Cosmet Sci 10(6):281–293. https://doi.org/10.1111/j.1467-2494.1988.tb00028.x

    Article  CAS  PubMed  Google Scholar 

  • Benson HAE et al (2019) Topical and transdermal drug delivery: from simple potions to smart technologies. Curr Drug Deliv 16(5):444–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlin CM (1997) Clinical report—alternative routes of drug administration—advantages & disadvantages (subject review). Pediatrics

    Google Scholar 

  • Bouwstra JA, Gooris GS (2010) The lipid organisation in human stratum corneum and model systems. Open Dermatol J 4(1):10–13. https://doi.org/10.2174/1874372201004010010

    Article  CAS  Google Scholar 

  • Chantasart D, Li SK (2012) Structure enhancement relationship of chemical penetration enhancers in drug transport across the stratum corneum. Pharmaceutics 4(1):71–92. https://doi.org/10.3390/pharmaceutics4010071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X et al (2020) Electroporation-enhanced transdermal drug delivery: effects of logP, pK(a), solubility and penetration time. Eur J Pharm Sci 151:105410

    Article  CAS  PubMed  Google Scholar 

  • Chien YW, Banga AK (1989) Iontophoretic (transdermal) delivery of drugs: overview of historical development. J Pharm Sci 78(5):353–354

    Article  CAS  PubMed  Google Scholar 

  • Choudhary N, Singh AP (2021) Transdermal drug delivery system: a review. Indian J Pharm Pharmacol 8(1):5–9

    Article  Google Scholar 

  • Dardano P et al (2015) A photolithographic approach to polymeric microneedles array fabrication. Materials (Basel) 8(12):8661–8673

    Article  CAS  PubMed  Google Scholar 

  • Das A, Ahmed A (2017) Natural permeation enhancer for transdermal drug delivery system and permeation evaluation: a review. Asian J Pharm Clin Res 10:5

    Article  CAS  Google Scholar 

  • Dermol-Černe J, Pirc E, Miklavčič D (2020) Mechanistic view of skin electroporation—models and dosimetry for successful applications: an expert review. Expert Opin Drug Deliv 17(5):689–704

    Article  PubMed  Google Scholar 

  • Dhal S, Pal K, Giri S (2020) Transdermal delivery of gold nanoparticles by a soybean oil-based oleogel under iontophoresis. ACS Appl Bio Mater 3(10):7029–7039

    Article  CAS  PubMed  Google Scholar 

  • Du H et al (2019) Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl Mater Interfaces 11(46):43588–43598

    Article  CAS  PubMed  Google Scholar 

  • Frei A et al (2003) A one year health economic model comparing transdermal fentanyl with sustained-release morphine in the treatment of chronic noncancer pain. J Pain Palliat Care Pharmacother 17(2):5–26

    Article  PubMed  Google Scholar 

  • Gandhi K et al (2012) Transdermal drug delivery: a review

    Google Scholar 

  • Giacomoni PU, Dong K, Collins D, Pernodet N, Yarosh D (2011) Use of reconstructed skin specimens to analyze stratum corneum remodeling and epidermal modifications. In: Skin biopsy—perspectives. InTech https://doi.org/10.5772/23023

  • Govil SK (1988) Drug delivery devices. In: Tyle P (ed). Marcel Dekker, New York

    Google Scholar 

  • Green PG (1996) Iontophoretic delivery of peptide drugs. J Control Release 41(1–2):33–48. https://doi.org/10.1016/0168-3659(96)01354-5

    Article  CAS  Google Scholar 

  • Hadgraft J, Lane ME (2009) Transepidermal water loss and skin site: a hypothesis. Int J Pharm 373(1–2):1–3. https://doi.org/10.1016/j.ijpharm.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  • Honeywell-Nguyen PL, Bouwstra JA (2005) Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol 2(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Igarashi T, Nishino K, Nayar SK (2007) The appearance of human skin: a survey. Found Trends® Comput Graph Vis 3(1):1–95. https://doi.org/10.1561/0600000013

  • Ita K (2015a) Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics 7(3):90–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ita KB (2015b) Chemical penetration enhancers for transdermal drug delivery—success and challenges. Curr Drug Deliv 12(6):645–651

    Article  CAS  PubMed  Google Scholar 

  • Jayaprakash R, Hameed J, Anupriya A (2017) An overview of transdermal delivery system. Asian J Pharm Clin Res 10(10):36. https://doi.org/10.22159/ajpcr.2017.v10i10.19909

    Article  CAS  Google Scholar 

  • Jayaswal SB, Sood R (1987) Transdermal drug delivery system—a review. Eastern Pharm 30(357):47–50

    Google Scholar 

  • Jeong WY et al (2019) Transdermal delivery of Minoxidil using HA-PLGA nanoparticles for the treatment in alopecia. Biomater Res 23:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong WY et al (2021) Recent advances in transdermal drug delivery systems: a review. Biomater Res 25(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Karande P, Mitragotri S (2009) Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochimica et Biophysica Acta (BBA) Biomembranes 1788(11):2362–2373. https://doi.org/10.1016/j.bbamem.2009.08.015

  • Kavadya Y, Behera B, Mohanty P, Routray D, Ghosh S, Das L (2018) Study of physiological and pathological skin changes in neonates: an east Indian perspective. Indian J Paediatr Dermatol 19(1):40. https://doi.org/10.4103/ijpd.ijpd_21_17

    Article  Google Scholar 

  • Keleb E, Sharma RK, Mosa EB, Aljahvi AZ (2010) Transdermal drug delivery system-design and evaluation. Int J Adv Pharm Sci 1:201–211

    CAS  Google Scholar 

  • Kim HM et al (2012) Transdermal drug delivery using disk microneedle rollers in a hairless rat model. Int J Dermatol 51(7):859–863

    Article  CAS  PubMed  Google Scholar 

  • Kornick CA et al (2003) Benefit-risk assessment of transdermal fentanyl for the treatment of chronic pain. Drug Saf 26(13):951–973

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Philip A (2007) Modified transdermal technologies: breaking the barriers of drug permeation via the skin. Trop J Pharm Res 6(1):633–644. https://doi.org/10.4314/tjpr.v6i1.14641. ISSN: 1596-5996

  • Kumar SR, Jain A, Nayak S (2012) Development and evaluation of transdermal patches of colchicine. Pharm Lett 4(1):330–343

    CAS  Google Scholar 

  • Kusum Devi V, Saisivam S, Maria GR, Deepti PU (2003) Design and evaluation of matrix diffusion controlled transdermal patches of verapamil hydrochloride. Drug Dev Ind Pharm 29(5):495–503. https://doi.org/10.1081/DDC-120018638

    Article  CAS  PubMed  Google Scholar 

  • Lee H et al (2018) Device-assisted transdermal drug delivery. Adv Drug Deliv Rev 127:35–45

    Article  CAS  PubMed  Google Scholar 

  • Leppert W et al (2018) Transdermal and topical drug administration in the treatment of pain. Molecules 23(3)

    Google Scholar 

  • Lin CH, Aljuffali IA, Fang JY (2014) Lasers as an approach for promoting drug delivery via skin. Expert Opin Drug Deliv 11(4):599–614

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Edwards DA, Blankschtein D, Langer R (1995) A mechanistic study of ultrasonically-enhanced transdermal drug delivery. J Pharm Sci 84(6):697–706. https://doi.org/10.1002/jps.2600840607

    Article  CAS  PubMed  Google Scholar 

  • Morrow DIJ, McCarron PA, Woolfson AD, Donnelly RF (2007) Innovative strategies for enhancing topical and transdermal drug delivery. Open Drug Deliv J 1(1):36–59. https://doi.org/10.2174/1874126600701010036

    Article  CAS  Google Scholar 

  • Neupane R et al (2021) Transdermal delivery of chemotherapeutics: strategies, requirements, and opportunities. Pharmaceutics 13(7):960. https://doi.org/10.3390/pharmaceutics13070960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchaguinla R (1997) Transdermal delivery of drug. Indian J Pharmacol 29:140

    Google Scholar 

  • Pandey D, Akhilesh D, Prabhakara P, Kamath J (2012) Transdermal drug delivery system: a novel drug delivery system. Int Res J Pharm 3(5):89–94

    CAS  Google Scholar 

  • Parivesh S, Sumeet D, Abhishek D (2010) Design, evaluation, parameters and marketed products of transdermal patches: a review. J Pharm Res 3(2):235–240

    CAS  Google Scholar 

  • Park J et al (2019) Enhanced transdermal drug delivery by sonophoresis and simultaneous application of sonophoresis and iontophoresis. AAPS PharmSciTech 20(3):96

    Article  CAS  PubMed  Google Scholar 

  • Pastore MN et al (2015) Transdermal patches: history, development and pharmacology. Br J Pharmacol 172(9):2179–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathan I, Setty C (2009) Chemical penetration enhancers for transdermal drug delivery systems. Trop J Pharm Res 8(2). https://doi.org/10.4314/tjpr.v8i2.44527

  • Peña-Juárez MC, Guadarrama-Escobar OR, Escobar-Chávez JJ (2022) Transdermal delivery systems for biomolecules. J Pharm Innov 17(2):319–332

    Article  PubMed  Google Scholar 

  • Pires LR et al (2019) A perspective on microneedle-based drug delivery and diagnostics in paediatrics. J Pers Med 9(4)

    Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi V, Yadav P (2012) Transdermal drug delivery system: an overview. Asian J Pharm 6(3)

    Google Scholar 

  • Rizwan M, Aqil M, Talegoankar S, Azeem A, Sultana Y, Ali A (2009) Enhanced transdermal drug delivery techniques: an extensive review on patents. Recent Pat Drug Deliv Formul 3(2):105–124

    Article  CAS  PubMed  Google Scholar 

  • Roohnikan M et al (2019) A snapshot of transdermal and topical drug delivery research in Canada. Pharmaceutics 11(6)

    Google Scholar 

  • Roy N et al (2017) On permeation enhancers: a major breakthrough in drug delivery technology

    Google Scholar 

  • Ruby PK, Pathak SM, Aggarwal D (2014) Critical attributes of transdermal drug delivery system (TDDS)—a generic product development review. Drug Dev Ind Pharm 40(11):1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Sandhyarani G, Madhuri M (2018) Development and evaluation of fast disintegrating films and tablets of Valsartan. Int J Med Sci Pharma Res 4(1):17. https://doi.org/10.22270/ijmspr.v4i1.23

  • Sankar V, Johnson DB, Sivan V, Ravich V, Raghuraman S, Velrajan G, Palaniappan R, Rajasekar S (2003) Design and evaluation of nifedipine transdermal patches. Indian J Pharm Sci 65(5):510

    CAS  Google Scholar 

  • Shaila L, Pandey S, Udupa N (2006) Design and evaluation of matrix type membrane controlled transdermal drug delivery system of nicotine suitable for use in smoking cessation. Indian J Pharm Sci 68(2):829–831. https://doi.org/10.4103/0250-474X.25711

    Article  Google Scholar 

  • Shakya AK et al (2019) Microneedles coated with peanut allergen enable desensitization of peanut sensitized mice. J Control Release 314:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde AJ, Garala KC, More HN (2008) Development and characterization transdermal therapeutics system of tramadol hydrochloride. Asian J Pharm (AJP) 2(4):265–269. https://doi.org/10.4103/0973-8398.45044

  • Singh S, Singh J (1993) Transdermal drug delivery by passive diffusion and iontophoresis: a review. Med Res Rev 13

    Google Scholar 

  • Singh MC, Naik AS, Sawant SD (2010) Transdermal drug delivery systems with major emphasis on transdermal patches: a review. J Pharm Res 3(10):2537–2543

    CAS  Google Scholar 

  • Sinha VR, Kaur MP (2000) Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm 26(11):1131–1140. https://doi.org/10.1081/DDC-100100984

    Article  CAS  PubMed  Google Scholar 

  • Sonjoy M, Thimmasetty J, Ratan GN, Kilarimath BH (2011) Formulation and evaluation of carvedilol transdermal patches. Int Res J Pharm 2(1):237–248

    Google Scholar 

  • Sood A, Panchagnula R (1999) Role of dissolution studies in controlled release drug delivery systems. STP Pharma Sci 9(2):157–168

    CAS  Google Scholar 

  • Szunerits S, Boukherroub R (2018) Heat: a highly efficient skin enhancer for transdermal drug delivery. Front Bioeng Biotechnol 6:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Ubaidulla U, Reddy MV, Ruckmani K, Ahmad FJ, Khar RK (2007) The transdermal therapeutic system of carvedilol: effect of hydrophilic and hydrophobic matrix on in vitro and in vivo characteristics. AAPS PharmSciTech 8(1):13–20. https://doi.org/10.1208/pt0801002

    Article  Google Scholar 

  • Varvel JR et al (1989) Absorption characteristics of transdermally administered fentanyl. 70(6):928–934

    Google Scholar 

  • Verma PR, Iyer SS (2000) Transdermal delivery of propranolol using mixed grades of Eudragit: design and in vitro and in vivo evaluation. Drug Dev Ind Pharm 26(4):471–476. https://doi.org/10.1081/DDC-100101257

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Ojha A (2018) Transdermal drug delivery system: a review. Int J Med Sci Pharma Res 4(1):1–9. https://doi.org/10.22270/ijmspr.v4i1.21

  • Vishvakarma P, Aggrawal S, Sharma R, Sharma S (2012) Transdermal drug delivery system: review. Int Res J Pharm 23(5):50–53

    Google Scholar 

  • Wade A, Weller PJ (1994) Handbook of pharmaceutical excipients. American Pharmaceutical Publishing Association, Washington DC, pp 362–366

    Google Scholar 

  • Wang Y et al (2022) Influencing factors and drug application of iontophoresis in transdermal drug delivery: an overview of recent progress. Drug Deliv Transl Res 12(1):15–26

    Article  PubMed  Google Scholar 

  • Weiner E, Victor A, Johansson ED (1976) Plasma levels of d-Norgestel after oral administration. Contraception 14:563–570. Keith AD (1983) Polymer matrix consideration for transdermal devices. Drug Dev Ind Pharm 9:605–625

    Google Scholar 

  • Wiechers J (1992) Use of chemical penetration enhancers in transdermal drug delivery–possibilities and difficulties. Acta Pharm Nord 4(2):123

    CAS  PubMed  Google Scholar 

  • Wokovich A et al (2006) Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V 64:1–8

    Google Scholar 

  • Yamamoto T, Katakabe K, Akiyoshi K, Kan K, Asano T (1990) Topical application of glibenclamide lowers blood glucose levels in rats. Diabetes Res Clin Pract 8:19–22. https://doi.org/10.1016/0168-8227(90)90091-7

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2019) Advances in transdermal insulin delivery. Adv Drug Deliv Rev 139:51–70

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Chen Y, Shi Y (2020) Microneedles: a potential strategy in transdermal delivery and application in the management of psoriasis. RSC Adv 10(24):14040–14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The principal investigator laboratory is supported by Science and Engineering Research Board (SERB) via Start-up Research Grant (SRG) [grant no. SRG/2021/002312] and the Empowerment and Equity Opportunities for Excellence in Science (EMEQ) grant [grant no. EEQ/2022/000218] during the scripting of the book chapter. The book chapter is related to the above research grants. The authors would like to acknowledge biorender (online imaging) service providers for the assistance in drawing images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayakumar Mahalingam Rajamanickam .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest in publishing the book chapters.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V. et al. (2023). Transdermal Drug Delivery Systems. In: Santra, T.S., Shinde, A.U.S. (eds) Advanced Drug Delivery. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 26. Springer, Singapore. https://doi.org/10.1007/978-981-99-6564-9_13

Download citation

Publish with us

Policies and ethics