Skip to main content

Controlled Drug Delivery System

  • Chapter
  • First Online:
Advanced Drug Delivery

Abstract

This comprehensive chapter delves into the world of controlled drug delivery systems, exploring their fundamental aspects, advancements, and future possibilities. The chapter begins by emphasizing the importance of controlled drug delivery in optimizing therapeutic outcomes and enhancing patient compliance. Various drug delivery systems are discussed, including oral, injectable, transdermal, and implantable systems, each offering unique characteristics and applications. The working mechanisms of these systems are thoroughly examined, including diffusion-controlled, dissolution-controlled, osmotic pressure-controlled, and targeted drug delivery mechanisms. The advantages of controlled drug delivery systems are highlighted, such as prolonged drug release, improved therapeutic efficacy, reduced dosing frequency, minimized side effects, and increased patient convenience. However, challenges and limitations also exist, requiring attention and consideration. Formulation complexities, manufacturing intricacies, regulatory considerations, and patient variability are hurdles in developing and implementing controlled drug delivery systems. Recent advancements in the field are explored, including the emergence of intelligent drug delivery systems that respond to specific cues, nanotechnology-based platforms enabling precise drug targeting, innovative combination therapy approaches, and bio-responsive drug delivery systems that adapt to physiological changes. These advancements pave the way for promising future applications, such as personalized medicine, targeted drug delivery, remote-controlled systems, and the integration of bioprinting and 3D printing technologies. In conclusion, this chapter provides a comprehensive understanding of controlled drug delivery systems, showcasing their potential to revolutionize drug therapy and improve patient outcomes. Researchers and practitioners can unlock new avenues in pharmaceutical science and create innovative solutions for controlled drug delivery by addressing the challenges, harnessing recent advancements, and exploring prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adepu S, Ramakrishna S (2021) Controlled drug delivery systems: current status and future directions. MDPI 26(19):1–45

    Google Scholar 

  • Agarwal P et al (2013) Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci 110(26):10799–10804

    Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  CAS  PubMed  Google Scholar 

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    Article  CAS  PubMed  Google Scholar 

  • Aman MW et al (2015) Chronopharmaceutics: a promising approach for drug targeting. Pharm Dev Technol 20(5):517–528

    Google Scholar 

  • Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28(1):5–24

    Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthi SS (2012) Controlled drug delivery systems: a comprehensive review. Crit Rev Food Sci Nutr 52(7):670–679

    Google Scholar 

  • Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373(6515):49–52

    Google Scholar 

  • Chen X et al (2018) Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules 23(7):1–24

    Google Scholar 

  • Chen H et al (2019) Theranostic nanomedicine for cancer imaging and therapy. J Mater Chem B 7(23):3496–3519

    Google Scholar 

  • Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Jeong SY (2010) Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31(1):106–114

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  CAS  PubMed  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13(12):1838–1845

    Article  CAS  PubMed  Google Scholar 

  • European Medicines Agency (2015) Guideline on the quality of water for pharmaceutical use

    Google Scholar 

  • Fan Q et al (2012) A smart pH-responsive nano-carrier as a drug delivery system for the controlled release of 5-fluorouracil. RSC Adv 2(13):5618–5625

    Google Scholar 

  • Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392

    Google Scholar 

  • Farra R, Sheppard Jr NF, McCabe L, Neer RM, Anderson JM, Santini Jr JT, Cima MJ, Langer R (2012) First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med 4(122):122ra21

    Google Scholar 

  • Gao FO et al (2014) Nanotechnology for multimodal synergistic cancer therapy. Chem Rev 114(21):10970–11020

    Google Scholar 

  • Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW (2014) 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Sci 58:36–42

    Google Scholar 

  • Hu Q, Katti PS, Gu Z (2014) Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6(21):12273–12286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain SK et al (2008) pH-sensitive liposomes: a novel carrier for drug delivery. Crit Rev Ther Drug Carrier Syst 25(6):551–573

    Google Scholar 

  • Jain KOP et al (2021) An enzyme-responsive sequential drug delivery system for targeted therapy in breast cancer. ACS Biomater Sci Eng 7(6):3117–3132

    Google Scholar 

  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2017) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 12(7):1717–1740

    Google Scholar 

  • Khullar R et al (2012) Enzyme-responsive drug delivery systems in cancer therapy. J Pharm Pharmacol 64(2):162–181

    Google Scholar 

  • Kim S et al (2011) Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 32(27):7181–7187

    PubMed  Google Scholar 

  • Kim YJ et al (2016) pH-sensitive polymeric nanoparticles for tumor-targeting drug delivery. Biomater Sci 4(6):890–899

    Google Scholar 

  • Kim J et al (2018) Nanotoxicity evaluations of hard carbon nanomaterials by a high-throughput screening approach. Nano Converg 5(1):1–12

    Google Scholar 

  • Kopeček J (2013) Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci 50(1):8–18

    Google Scholar 

  • Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35

    Article  CAS  Google Scholar 

  • Lai WF et al (2015) Controlled-release hydrogel of platelet-rich plasma in suppressing biliary fibrosis after hepatic injury. J Control Release 206:37–47

    Google Scholar 

  • Langer R (1990) New methods of drug delivery. Science 249(4976):1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Langer R (1998) Drug delivery and targeting. Nature 392(6679):5–10

    CAS  PubMed  Google Scholar 

  • Langer R (2000) Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33(2):94–101

    Article  CAS  PubMed  Google Scholar 

  • Lee ES, Na K, Bae YH (2005) Super pH-sensitive multifunctional polymeric micelle. Nano Lett 5(2):325–329

    Article  CAS  PubMed  Google Scholar 

  • Li SD, Huang L (2010) Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochimica et Biophysica Acta (BBA) Biomembranes 1788(10):2259–2266

    Google Scholar 

  • Lim J et al (2018) Precision delivery of nanomaterials for inflammation and infection control. Nanomedicine 14(3):913–924

    Google Scholar 

  • Liu LX et al (2019) Temperature-triggered gelation of poly(N-isopropylacrylamide)-based microgels for controlled drug delivery. Int J Biol Macromol 124:763–772

    Google Scholar 

  • Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8(1):15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo R, Jiang T, Gu Z (2014) It enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew Chem Int Ed 53(19):5815–5820

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2006) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  Google Scholar 

  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Bures P, Leobandung WS, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann AR et al (2018) Stability study of drug-loaded polymeric nanoparticles: a comprehensive review of the state of the art. Mater Sci Eng 92:983–993

    Google Scholar 

  • Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Delivery Rev 56(5):581–587. https://doi.org/10.1016/j.addr.2003.10.023

  • Pritchard EM et al (2018) Nanoparticle tumor localization, disruption of autophagosomal trafficking, and prolonged drug delivery improve survival in peritoneal mesothelioma. Biomaterials 159:93–104

    Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2(1):8–21

    Google Scholar 

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5(1):37–42

    Google Scholar 

  • Saikia C, Gogoi P, Maji TK (2015) Chitosan: a promising biopolymer in drug delivery applications. J Mol Genet 2–10

    Google Scholar 

  • Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249

    Article  CAS  Google Scholar 

  • Shi Y, Van Der Meel R, Theek B, Oude Blenke E, Pieters EH, Fens MH, Ehling J, Schiffelers RM, Storm G, Van Nostrum CF, Lammers T (2014) Complete regression of xenograft tumors upon targeted delivery of paclitaxel via Π-Π stacking stabilized polymeric micelles. ACS Nano 8(4):37

    Google Scholar 

  • Shi J, Votruba AR (2013) Nanoparticles for drug delivery in cancer treatment. Comprehensive Reviews in Food Science and Food Safety, 12(3):204–218

    Google Scholar 

  • Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48(2–3):139–157

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z (2016) Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 102:295–305

    Google Scholar 

  • Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2011) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 10(10):787–808

    Google Scholar 

  • U.S. Food and Drug Administration (2017) Product-specific guidance documents for generic drug development. Center for Drug Evaluation and Research

    Google Scholar 

  • Ventola CL (2014a) Progress in 3D printing: FDA regulation of 3D-printed medical products. Pharm Ther 39(5):346–352

    Google Scholar 

  • Ventola CL (2014b) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704–711

    Google Scholar 

  • Xue H et al (2011) Development of a thermosensitive hydrogel for doxorubicin delivery. Int J Pharm 409(1–2):280–287

    Google Scholar 

  • Yang C et al (2017) Synthetic and biopolymeric pH-responsive nanoparticles for drug delivery. Bioconjug Chem 28(4):907–917

    Google Scholar 

  • Zhang C et al (2016) Temperature-responsive polymer-grafted mesoporous silica nanoparticles for remotely triggered drug release. ACS Appl Mater Interfaces 8(1):179–187

    Article  Google Scholar 

  • Zhuang B et al (2013) Fabrication and characterization of sodium alginate/gelatin hydrogel scaffolds with sustained VEGF-release. J Biomed Mater Res A 101(3):852–859

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinal Pardhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pillai, A., Bhande, D., Pardhi, V. (2023). Controlled Drug Delivery System. In: Santra, T.S., Shinde, A.U.S. (eds) Advanced Drug Delivery. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 26. Springer, Singapore. https://doi.org/10.1007/978-981-99-6564-9_11

Download citation

Publish with us

Policies and ethics