Skip to main content

A Novel Skill Learning Framework for Redundant Manipulators Based on Multi-task Dynamic Movement Primitives

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14268))

Included in the following conference series:

  • 548 Accesses

Abstract

Skill learning is a frontier problem in intelligent robot systems, which aims to make robots efficiently learn manipulation skills from human demonstration. In this paper, we propose a novel robot skill learning framework based on multi-task dynamic movement primitives (MT-DMPs) to improve the operation efficiency of redundant manipulators, which is mainly composed of sub-task segmentation module, parameter setting module, robot skill learning module and pose optimization module. We describe the design steps of the proposed framework in detail as follows: 1) Finite State Machine (FSM) is used to divide multiple tasks into a sub-task sequence, thus forming the state transition diagram for the robot to perform multiple tasks. 2) An exponential decay function is introduced to improve the basic DMPs, and the design flow for instantiating robot skills is summarized. 3) Velocity Directional Manipulability (VDM) is introduced as the evaluation index of robot motion performance, and a pose optimization model suitable for redundant manipulators is established. Finally, we build an experimental platform based on the Robot Operating System (ROS), and carry out a series of experiments. The results show that our proposed skill learning framework can improve the efficiency and accuracy of autonomous operation of redundant manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knudsen, M., Kaivo-Oja, J.: Collaborative robots: frontiers of current literature. J. Intell. Robot. Syst. Theory Appl. 3(2), 13–20 (2020)

    Google Scholar 

  2. Gualtieri, L., Rauch, E., Vidoni, R.: Emerging research fields in safety and ergonomics in industrial collaborative robotics: a systematic literature review. Robot. Comput.-Integr. Manuf. 67, 101998 (2021)

    Article  Google Scholar 

  3. Alambeigi, F., Sefati, S., Armand, M.: A convex optimization framework for constrained concurrent motion control of a hybrid redundant surgical system. In: 2018 Annual American Control Conference (ACC), pp. 1158–1165 (2018)

    Google Scholar 

  4. Pham, A.D., Ahn, H.J.: High precision reducers for industrial robots driving 4th industrial revolution: state of arts, analysis, design, performance evaluation and perspective. Int. J. Precis. Eng. Manuf. Green Technol. 5(4), 519–533 (2018)

    Google Scholar 

  5. Tamizi, M.G., Yaghoubi, M., Najjaran, H.: A review of recent trend in motion planning of industrial robots. Int. J. Intell. Robot. Appl. 1–22 (2023)

    Google Scholar 

  6. Lu, Z., Wang, N., Yang, C.: A constrained dmps framework for robot skills learning and generalization from human demonstrations. IEEE/ASME Trans. Mechatron. 26(6), 3265–3275 (2021)

    Article  Google Scholar 

  7. Li, X., Liu, H., Dong, M.: A general framework of motion planning for redundant robot manipulator based on deep reinforcement learning. IEEE Trans. Ind. Inform. 18(8), 5253–5263 (2021)

    Article  Google Scholar 

  8. Xu, C., Wang, M., Chi, G., et al.: An inertial neural network approach for loco-manipulation trajectory tracking of mobile robot with redundant manipulator. Neural Netw. 155, 215–223 (2022)

    Article  Google Scholar 

  9. Ding, G., Liu, Y., Zang, X., et al.: A task-learning strategy for robotic assembly tasks from human demonstrations. Sensors 20(19), 5505 (2020)

    Article  Google Scholar 

  10. Liu, Y., Xu, H., Liu, D., et al.: A digital twin-based sim-to-real transfer for deep reinforcement learning-enabled industrial robot grasping. Robot. Comput.-Integr. Manuf. 78, 102365 (2022)

    Article  Google Scholar 

  11. Sun, C., Orbik, J., Devin, C.M., et al.: Fully autonomous real-world reinforcement learning with applications to mobile manipulation. In: Proceedings of the 5th Conference on Robot Learning (PMLR), pp. 308–319 (2022)

    Google Scholar 

  12. Zeng, C., Li, S., Chen, Z., et al.: Multifingered robot hand compliant manipulation based on vision-based demonstration and adaptive force control. IEEE Trans. Neural Netw. Learn. Syst. 1–12 (2022). https://doi.org/10.1109/TNNLS.2022.3184258

  13. Lin, Y., Wang, A.S., Undersander, E., et al.: Efficient and interpretable robot manipulation with graph neural networks. IEEE Robot. Autom. Lett. 7(2), 2740–2747 (2022)

    Article  Google Scholar 

  14. Duque, D.A., Prieto, F.A., Hoyos, J.G.: Trajectory generation for robotic assembly operations using learning by demonstration. Robot. Comput.-Integr. Manuf. 57, 292–302 (2019)

    Article  Google Scholar 

  15. Zeng, C., Yang, C., Cheng, H., et al.: Simultaneously encoding movement and sEMG-based stiffness for robotic skill learning. IEEE Trans. Ind. Inform. 17(2), 1244–1252 (2020)

    Article  Google Scholar 

  16. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., et al.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frank, F., Paraschos, A., Smagt, P., et al.: Constrained probabilistic movement primitives for robot trajectory adaptation. IEEE Trans. Robot. 38(4), 2276–2294 (2021)

    Article  Google Scholar 

  18. Saveriano, M., Abu-Dakka, F.J., Abu-Dakka, A., et al.: Dynamic movement primitives in robotics: a tutorial survey. arXiv preprint arXiv:2102.03861 (2021)

  19. Li, J., Li, Z., Li, X., et al.: Skill learning strategy based on dynamic motion primitives for human–robot cooperative manipulation. IEEE Trans. Cogn. Dev. Syst. 13(1), 105–117 (2020)

    Article  Google Scholar 

  20. Yu, X., Liu, P., He, W., et al.: Human-robot variable impedance skills transfer learning based on dynamic movement primitives. IEEE Robot. Autom. Lett. 7(3), 6463–6470 (2022)

    Article  Google Scholar 

  21. Fang, B., Wei, X., Sun, F., et al.: Skill learning for human-robot interaction using wearable device. Tsinghua Sci. Technol. 24(6), 654–662 (2022)

    Article  Google Scholar 

  22. Zhang, Y., Li, M., Yang, C.: Robot learning system based on dynamic movement primitives and neural network. Neurocomputing 451, 205–214 (2021)

    Article  Google Scholar 

  23. Park, H.W., Ramezani, A., Grizzle, J.W.: A finite-state machine for accommodating unexpected large ground-height variations in bipedal robot walking. IEEE Trans. Robot. 29(2), 331–345 (2012)

    Article  Google Scholar 

  24. Hartenberg, R.S., Denavit, J.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 77(2), 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  25. Hu, S., Yang, Q., He, L., Tan, X.: Mechanism parameters optimization of bionic frog jumping robot based on velocity directional manipulability measure. J. Beijing Univ. Aeronaut. Astronaut. 3, 351–356 (2012)

    Google Scholar 

  26. Sancaktar, I., Tuna, B., Ulutas, M.: Inverse kinematics application on medical robot using adapted PSO method. Eng. Sci. Technol. Int. J. 21(5), 1006–1010 (2018)

    Google Scholar 

  27. Ning, Y., Li, T., Du, W., et al.: Inverse kinematics and planning/control co-design method of redundant manipulator for precision operation: design and experiments. Robot. Comput.-Integr. Manuf. 80, 102457 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuanjie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ning, Y., Li, T., Yao, C., Huang, Y. (2023). A Novel Skill Learning Framework for Redundant Manipulators Based on Multi-task Dynamic Movement Primitives. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14268. Springer, Singapore. https://doi.org/10.1007/978-981-99-6486-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6486-4_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6485-7

  • Online ISBN: 978-981-99-6486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics