Skip to main content

Applications of Artificial Intelligence and Machine Learning for Diagnosis, Prediction, and Smart Health Care

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning in Healthcare

Abstract

In health care, machine learning (ML) algorithms harness the things of health data offered by the Internet of Things (IoT) to enhance patient outcomes. Such approaches offer both potential applications and some significant challenges. There are many domains in ML, but three domains that are commonly used are Natural Language Processing (NLP) for medical papers, medical imaging, and genetic information. Maximum of these disciplines deal with diagnosis, detection, and prediction. The most common types of applications are treatment recommendations after diagnoses, administrative tasks, patients’ adherence, and involvement. While there are numerous circumstances inside which AI can do healthcare activities equally as good as possible, if not faster than, and quicker than humans, obstacles will prevent the occupation of healthcare providers that become fully automated for a long time. A substantial infrastructure of medical devices now provides data, but the supporting infrastructure is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Apaydın, E. (2014). Introduction to machine learning. The MIT Press Cambridge.

    Google Scholar 

  • Berg, S. (2018). Nudge theory explored to boost medication adherence. American Medical Association.

    Google Scholar 

  • Boosting, S. G. (2002). By jerome friedman. Computational Statistics and Data Analysis-Nonlinear Methods and Data Mining, 38(4), 367–378.

    Google Scholar 

  • Buchanan, B. G., & Shortliffe, E. H. (1984). Rule-based expert systems: The mycin experiments of the stanford heuristic programming project.

    Google Scholar 

  • Bush, J. (2018). How AI is taking the scut work out of health care. Harvard Business Review, 5.

    Google Scholar 

  • Commins, J. (n.d.). Nurses say distractions cut bedside time by 25%. Healthleaders, 2010

    Google Scholar 

  • Davenport, T. H. (2018). The Ai advantage: How to put the artificial intelligence revolution to work. MIT Press.

    Google Scholar 

  • Davenport, T. H., & Glaser, J. (2002). Just-in-time delivery comes to knowledge management. Harvard Business Review, 80(7), 107–111.

    PubMed  Google Scholar 

  • Davenport, T. H., Hongsermeier, T., & Mc Cord, K. A. (2018). Using ai to improve electronic health records. Harvard Business Review, 12, 1–6.

    Google Scholar 

  • Davenport, T. H., & Kirby, J. (2016). Only humans need apply: Winners and losers in the age of smart machines. Harper Business, New York.

    Google Scholar 

  • Fakoor, R., Ladhak, F., Nazi, A., & Huber, M. (2013). Using deep learning to enhance cancer diagnosis and classification. In Proceedings of the international conference on machine learning (Vol. 28, pp. 3937–3949).

    Google Scholar 

  • Faulkner, M. (2019). Book review: World war II at sea: A global history. Sage Publications Sage UK.

    Book  Google Scholar 

  • French, R. M. (2000). The turing test: the first 50 years. Trends in Cognitive Sciences, 4(3), 115–122.

    Google Scholar 

  • Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biological Cybernetics, 20 (3), 121–136.

    Google Scholar 

  • Fukushima, K., Miyake, S., & Ito, T. (1983). Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (5), 826–834.

    Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction (Vol. 2). Springer.

    Google Scholar 

  • Hazan, E., Klivans, A., & Yuan, Y. (2017). Hyperparameter optimization: A spectral approach. arXiv preprint arXiv:1706.00764.

  • Ho, T. K. (2002). A data complexity analysis of comparative advantages of decision forest constructors. Pattern Analysis & Applications, 5 (2), 102–112.

    Google Scholar 

  • Huang, K.-L., Mashl, R. J., Wu, Y., Ritter, D. I., Wang, J., Oh, C., et al. (2018). Pathogenic germline variants in 10,389 adult cancers. Cell, 173(2), 355–370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain, A., Malik, A., Halim, M. U., & Ali, A. M. (2014). The use of robotics in surgery: A review. International Journal of Clinical Practice, 68 (11), 1376–1382.

    Google Scholar 

  • Hutter, F., Hoos, H., & Leyton-Brown, K. (2014). An efficient approach for assessing hyperparameter importance. In International Conference On Machine Learning (pp. 754–762).

    Google Scholar 

  • Insights, D. (2018). State of AI in the enterprise. Deloitte.

    Google Scholar 

  • Kotsiantis, S. B., Zaharakis, I., Pintelas, P., et al. (2007). Supervised machine learning: A review of classification techniques. Emerging Artificial Intelligence Applications in Computer Engineering, 160(1), 3–24.

    Google Scholar 

  • Längkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42, 11–24.

    Google Scholar 

  • Lee, S., Celik, S., Logsdon, B., Lundberg, S., Martins, T., Oehler, V., others et al. (n.d.). A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nature Communications, 9, 42.

    Google Scholar 

  • Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16 (6), 321–332.

    Google Scholar 

  • Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28, 129–137.

    Google Scholar 

  • Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, P., & Dewhurst, M. (2017). A future that works: AI, automation, employment, and productivity. McKinsey Global Institute Research, Technical Report, 60, 1–135.

    Google Scholar 

  • Mason, S., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent in function. In 12th International Conference on Neural Information Processing Systems (Vol. 29). Denver, Colorado, USA.

    Google Scholar 

  • Programme, N. H. S. R. C. S. D. M., & Group, C. (2012). Measuring shared decision making: a review of research evidence.

    Google Scholar 

  • Proudfoot, D., & Copeland, J. (2004). The computer, artificial intelligence, and the turing test.

    Google Scholar 

  • Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., et al. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 1–10.

    Article  Google Scholar 

  • Ross, C., & Swetlitz, I. (2017). IBM pitched its watson supercomputer as a revolution in cancer care it’s nowhere close. Stat .

    Google Scholar 

  • Russell, S., Norvig, P., & Intelligence, A. (1995). A modern approach. Artificial Intelligence, Prentice- Hall, Egnlewood Cliffs, 25 (27), 79–80.

    Google Scholar 

  • Rysavy, M. (2013). Evidence-based medicine: A science of uncertainty and an art of probability. AMA Journal of Ethics, 15(1), 4–8.

    Article  Google Scholar 

  • Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210

    Article  Google Scholar 

  • Samuel, A. L. (1960). Programming computers to play games. In Advances in computers (Vol. 1, pp. 165–192). Elsevier

    Google Scholar 

  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

    Article  PubMed  Google Scholar 

  • Shimabukuro, D. W., Barton, C. W., Feldman, M. D., Mataraso, S. J., & Das, R. (2017). Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial. BMJ Open Respiratory Research, 4(1), e000234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silver, D., & Hassabis, D. (2016). Alphago: Mastering the ancient game of go with machine learning. Research Blog, 9

    Google Scholar 

  • Sordo, M. (2002). Introduction to neural networks in healthcare. Open Clinical: Knowledge Management for Medical Care.

    Google Scholar 

  • Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing test (pp. 23–65). Springer.

    Google Scholar 

  • Utermohlen, K. (2018). Four robotic process automation (RPA) applications in the healthcare industry. Medium

    Google Scholar 

  • Vial, A., Stirling, D., Field, M., Ros, M., Ritz, C., Carolan, M., & Miller, A. A. (2018). The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: A review. Transl Cancer Res, 7(3), 803–816.

    Article  Google Scholar 

  • Volpp, K. G., & Mohta, N. S. (2016). Patient engagement survey: Improved engagement leads to better outcomes, but better tools are needed. NEJM Catalyst , 2 (3).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Upadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, N., Gulati, A. (2023). Applications of Artificial Intelligence and Machine Learning for Diagnosis, Prediction, and Smart Health Care. In: Yadav, D.K., Gulati, A. (eds) Artificial Intelligence and Machine Learning in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-99-6472-7_6

Download citation

Publish with us

Policies and ethics