Skip to main content

Thermal Degradation of Kinetics of PET, PTT and PBT Hybrid Nanocomposites

  • Conference paper
  • First Online:
Dynamic Behavior of Soft and Hard Materials, Volume 3 (IMPLAST 2022)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 36))

Included in the following conference series:

  • 89 Accesses

Abstract

Poly (ethylene terephthalate) (PET), Poly (trimethylene terephthalate) (PTT) and Poly (butylene terephthalate) (PBT) and its hybrid nanocomposites containing graphene oxide (GO) and functionalized multi-walled carbon nanotubes (f-MWCNT) were prepared by melt blending. Both pristine polyesters and the hybrid nanocomposites were studied for thermal degradation kinetics using thermogravimetric analyzer. The nanocomposites were studied from the temperature range of 100 to 800 °C at a heating rate of 10 °C/min in a nitrogen atmosphere. Activation energy (Ea) and pre-exponential or frequency factor (A) were determined for the thermal degradation of these nanocomposites using the Coats–Redfern equation and was found to follow first-order kinetics in nitrogen atmosphere. The effect of nanofiller content on the parameters of thermal degradation kinetics was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marshall I, Todd A (1953) The thermal degradation of polyethylene terephthalate. Trans Faraday Soc 49:67–78. https://doi.org/10.1039/TF9534900067

    Article  CAS  Google Scholar 

  2. Jenekhe SA, Lin JW, Sun B (1983) Kinetics of the thermal degradation of polyethylene terephthalate. Thermochim Acta 61:287–299. https://doi.org/10.1016/0040-6031(83)80283-4

    Article  CAS  Google Scholar 

  3. Al-Mulla A (2012) Enthalpy-entropy compensation in polyester degradation reactions. Int J Chem Eng 2012:782346. https://doi.org/10.1155/2012/782346

    Article  CAS  Google Scholar 

  4. Kaur M, Kaur H, Kukkar D (2018) Synthesis and characterization of graphene oxide using modified Hummer’s method. AIP Conf Proc 1953:30180. https://doi.org/10.1063/1.5032515

    Article  CAS  Google Scholar 

  5. Tzavalas S, Drakonakis V, Mouzakis DE, Fischer D, Gregoriou VG (2006) Effect of carboxy-functionalized multiwall nanotubes (MWNT - COOH) on the crystallization and chain conformations of poly(ethylene terephthalate) PET in PET—MWCNT nanocomposites. Macromolecules 39:9150–9156. https://doi.org/10.1021/ma0613584

    Article  CAS  Google Scholar 

  6. Swain P (2013) Physical and mechanical behavior of Al2O3 filled jute fiber reinforced epoxy composites. Int J Curr Eng Technol 2:67–71. https://doi.org/10.14741/ijcet/spl.2.2014.13

    Article  Google Scholar 

  7. Paszkiewicz S, Nachman M, Szymczyk A, Spitalsky Z, Mosnacek J, Rosłaniec Z (2014) Influence of expanded graphite (EG) and graphene oxide (GO) on physical properties of PET based nanocomposites. Polish J Chem Technol 16:45–50. https://doi.org/10.2478/pjct-2014-0068

    Article  CAS  Google Scholar 

  8. Krishnan PSG, Kulkarni ST (2009) Polyester resins. In: Deopura BL, Alagirusamy R, Joshi M, Gupta B (eds) Polyesters and polyamides. Woodhead Publishing Limited, UK, Chapter 1, pp 3–40. https://doi.org/10.1533/9781845694609.1.3

  9. Zhou T, Wang X, Liu XH, Lai LZ (2010) Effect of silane treatment of carboxylic-functionalized multi-walled carbon nanotubes on the thermal properties of epoxy nanocomposites. Express Polym Lett 4:217–226. http://ndl.ethernet.edu.et/bitstream/123456789/72813/1

  10. Safaei MR, Goshayeshi HR, Chaer I (2019) Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM. Energies 12:10. https://doi.org/10.3390/en12102002

    Article  CAS  Google Scholar 

  11. Maurya S, Purushothaman M, Krishnan PSG, Nayak SK (2013) Effect of nano-calcium carbonate content on the properties of poly(urethane methacrylate) nanocomposites. J Thermoplast Compos Mater 27:1711–1727. https://doi.org/10.1177/0892705712475011

    Article  CAS  Google Scholar 

  12. Praveen S, Krishnan PSG, Purushothaman M, Nayak SK (2021) HDI based poly(Urethane Methacrylate) nanocomposites containing NanoCaCO3: preparation and properties. Polymer Sci Peer Rev J 1:522. https://doi.org/10.31031/PSPRJ.2021.01.000522

    Article  Google Scholar 

  13. Pundir A, Krishnan PSG, Nayak SK (2017) Effect of nanocalcium carbonate content on the properties of PLA nanocomposites. J Compos Bio Polym 5:26–33. https://doi.org/10.12974/2311-8717.2017.05.01.4

    Article  CAS  Google Scholar 

  14. Venkatachalam S, Nayak SG, Labde VJ, Gharal PR, Rao K, Kelkar AK. Degradation and recyclability of poly (Ethylene Terephthalate). In: Saleh HEM (ed). https://doi.org/10.5772/48612

  15. Martin-Gullon I, Esperanza M, Font R (2001) Kinetic model for the pyrolysis and combustion of poly-(Ethylene Terephthalate) (PET). J Anal Appl Pyrolysis 58:635–650. https://doi.org/10.1016/S0165-2370(00)00141-8

    Article  Google Scholar 

  16. Kelsey DR, Kiibler KS, Tutunjian PN (2005) Thermal stability of poly(trimethylene terephthalate). Polymer (Guildf) 46:8937–8946. https://doi.org/10.1016/j.polymer.2005.07.015

    Article  CAS  Google Scholar 

  17. Coats AW, Redfern JP (1965) Kinetic parameters from thermogravimetric data. II. J Polym Sci Part B Polym Lett 3:917–920. https://doi.org/10.1002/pol.1965.110031106

  18. Das P, Tiwari P (2019) Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochim Acta 679:178340. https://doi.org/10.1016/j.tca.2019.178340

    Article  CAS  Google Scholar 

  19. Andricic B, Kovacic T, Perinovic S, Grgic A (2008) Thermal properties of poly(L-lactide)/calcium carbonate nanocomposites. Macromol Symp 263:96–101. https://doi.org/10.1002/masy.200850312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dept. of Chemicals and Fertilizers, Govt. of India under the scheme of establishing, Centres of Excellence (CoE) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Santhana Gopala Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rath, A.P., Santhana Gopala Krishnan, P., Kanny, K. (2024). Thermal Degradation of Kinetics of PET, PTT and PBT Hybrid Nanocomposites. In: Velmurugan, R., Balaganesan, G., Kakur, N., Kanny, K. (eds) Dynamic Behavior of Soft and Hard Materials, Volume 3. IMPLAST 2022. Springer Proceedings in Materials, vol 36. Springer, Singapore. https://doi.org/10.1007/978-981-99-6259-4_24

Download citation

Publish with us

Policies and ethics