Skip to main content

A Review of the Pre-treatments that Are Used in Membrane Distillation

  • Conference paper
  • First Online:
Recent Advances in Civil Engineering (ICC IDEA 2023)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 398))

  • 95 Accesses

Abstract

Membrane distillation (MD), a new thermal-based membrane technique, can filter wastewater and high-salt brines. Low electrical energy usage, the removal of non-volatile solutes, and ambient operating pressures are a few advantages of MD versus pressure-driven processes. Unfortunately, issues with membrane fouling and pore wetting are still preventing its widespread industrial adoption. Effective pre-treatment and cleaning methods are essential to manage this issue, much like with other membrane processes. These issues receive little attention in the MD literature, despite their significance in providing a stable and reliable water treatment process. Despite their significance in maintaining a steady and dependable water treatment process, this is the case. This is demonstrated by the fact that, despite the vast and expanding body of literature on MD, a thorough examination of membrane cleaning and pre-treatment is still lacking. An extensive description of pre-treatment procedures for a variety of MD applications is provided in this paper. In order to help researchers in this sector create membrane distillation technology for broader commercial applicability, future research directions are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choudhury MR, Anwar N, Jassby D, Rahaman MS (2019) Fouling and wetting in the membrane distillation driven wastewater reclamation process—a review. Adv Colloid Interface Sci 269:370–399. https://doi.org/10.1016/j.cis.2019.04.008

    Article  Google Scholar 

  2. Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E (2008) Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. J Memb Sci 323(1):85–98. https://doi.org/10.1016/j.memsci.2008.06.006

    Article  Google Scholar 

  3. Sivakumar M, Ramezanianpour M, O’Halloran G (2013) Mine water treatment using a vacuum membrane distillation system. APCBEE Proc 5:157–162. https://doi.org/10.1016/j.apcbee.2013.05.028

    Article  Google Scholar 

  4. Leaper S, Abdel-Karim A, Gad-Allah TA, Gorgojo P (2019) Air-gap membrane distillation as a one-step process for textile wastewater treatment. Chem Eng J 360:1330–1340. https://doi.org/10.1016/j.cej.2018.10.209

    Article  Google Scholar 

  5. Alkhudhiri A, Darwish N, Hilal N (2013) Produced water treatment: application of air gap membrane distillation. Desalination 309:46–51. https://doi.org/10.1016/j.desal.2012.09.017

    Article  Google Scholar 

  6. Quist-Jensen CA, Ali A, Mondal S, Macedonio F, Drioli E (2016) A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. J Memb Sci 505:167–173. https://doi.org/10.1016/j.memsci.2016.01.033

    Article  Google Scholar 

  7. Alves VD, Coelhoso IM (2006) Orange juice concentration by osmotic evaporation and membrane distillation: a comparative study. J Food Eng 74(1):125–133. https://doi.org/10.1016/j.jfoodeng.2005.02.019

    Article  Google Scholar 

  8. Zarebska A, Nieto DR, Christensen KV, Norddahl B (2014) Ammonia recovery from agricultural wastes by membrane distillation: fouling characterization and mechanism. Water Res 56:1–10. https://doi.org/10.1016/j.watres.2014.02.037

    Article  Google Scholar 

  9. Shirazi MMA, Kargari A, Tabatabaei M (2015) Sweeping gas membrane distillation (SGMD) as an alternative for integration of bioethanol processing: study on a commercial membrane and operating parameters. Chem Eng Commun 202(4):457–466. https://doi.org/10.1080/00986445.2013.848805

    Article  Google Scholar 

  10. Drioli E, Di Profio G, Curcio E (2012) Progress in membrane crystallization. Curr Opin Chem Eng 1(2):178–182. https://doi.org/10.1016/j.coche.2012.03.005

    Article  Google Scholar 

  11. Osman A, Leaper S, Sreepal V, Gorgojo P, Stitt H, Shokri N (2019) Dynamics of salt precipitation on graphene oxide membranes. Cryst Growth Des 19(1):498–505. https://doi.org/10.1021/acs.cgd.8b01597

    Article  Google Scholar 

  12. Gryta M (2008) Fouling in direct contact membrane distillation process. J Memb Sci 325(1):383–394. https://doi.org/10.1016/j.memsci.2008.08.001

    Article  Google Scholar 

  13. Badruzzaman M, Voutchkov N, Weinrich L, Jacangelo JG (2019) Selection of pretreatment technologies for seawater reverse osmosis plants: a review. Desalination 449(May 2018):78–91. https://doi.org/10.1016/j.desal.2018.10.006

  14. Zhang Y, Li M, Wang Y, Ji X, Zhang L, Hou L (2015) Simultaneous concentration and detoxification of lignocellulosic hydrolyzates by vacuum membrane distillation coupled with adsorption. Bioresour Technol 197:276–283. https://doi.org/10.1016/j.biortech.2015.08.097

    Article  Google Scholar 

  15. Bindels M, Carvalho J, Gonzalez CB, Brand N, Nelemans B (2020) Techno-economic assessment of seawater reverse osmosis (SWRO) brine treatment with air gap membrane distillation (AGMD). Desalination 489(October 2019):114532. https://doi.org/10.1016/j.desal.2020.114532

  16. Zhang Z, Du X, Carlson KH, Robbins CA, Tong T (2019) Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration. Desalination 454(December 2018):82–90. https://doi.org/10.1016/j.desal.2018.12.011

    Article  Google Scholar 

  17. Cho H, Choi Y, Lee S (2018) Effect of pretreatment and operating conditions on the performance of membrane distillation for the treatment of shale gas wastewater. Desalination 437(March):195–209. https://doi.org/10.1016/j.desal.2018.03.009

    Article  Google Scholar 

  18. Ricceri F et al (2019) Desalination of produced water by membrane distillation: effect of the feed components and of a pre-treatment by Fenton oxidation. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-51167-z

    Article  Google Scholar 

  19. Li J, Wu J, Sun H, Cheng F, Liu Y (2016) Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation. Desalination 380:43–51. https://doi.org/10.1016/j.desal.2015.11.020

    Article  Google Scholar 

  20. Dow N et al (2017) Demonstration of membrane distillation on textile waste water assessment of long term performance, membrane cleaning and waste heat integration. Environ Sci Water Res Technol 3(3):433–449. https://doi.org/10.1039/c6ew00290k

    Article  Google Scholar 

  21. Yatmaz HC, Dizge N, Kurt MS (2017) Combination of photocatalytic and membrane distillation hybrid processes for reactive dyes treatment. Environ Technol 38(21):2743–2751. https://doi.org/10.1080/09593330.2016.1276222

    Article  Google Scholar 

  22. Gryta M (2008) Chemical pretreatment of feed water for membrane distillation. Chem Pap 62(1):100–105. https://doi.org/10.2478/s11696-007-0085-5

    Article  Google Scholar 

  23. Quist-Jensen CA et al (2016) Direct contact membrane distillation for the concentration of clarified orange juice. J Food Eng 187:37–43. https://doi.org/10.1016/j.jfoodeng.2016.04.021

    Article  Google Scholar 

  24. Martinetti CR, Childress AE, Cath TY (2009) High recovery of concentrated RO brines using forward osmosis and membrane distillation. J Memb Sci 331(1–2):31–39. https://doi.org/10.1016/j.memsci.2009.01.003

    Article  Google Scholar 

  25. Andrés-Mañas JA, Ruiz-Aguirre A, Acién FG, Zaragoza G (2018) Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery. Desalination 443(May):110–121. https://doi.org/10.1016/j.desal.2018.05.025

    Article  Google Scholar 

  26. Xu Y, Zhu BK, Xu YY (2006) Pilot test of vacuum membrane distillation for seawater desalination on a ship. Desalination 189(1–3 SPEC. ISS.):165–169. https://doi.org/10.1016/j.desal.2005.06.024

  27. Palmer M, Hatley H (2018) The role of surfactants in wastewater treatment: impact, removal and future techniques: a critical review. Water Res 147:60–72. https://doi.org/10.1016/j.watres.2018.09.039

    Article  Google Scholar 

  28. Shin YU, Yun ET, Kim J, Lee H, Hong S, Lee J (2020) Electrochemical oxidation-membrane distillation hybrid process: utilizing electric resistance heating for distillation and membrane defouling through thermal activation of anodically formed persulfate. Environ Sci Technol 54(3):1867–1877. https://doi.org/10.1021/acs.est.9b05141

    Article  Google Scholar 

  29. Van Der Bruggen B (2013) Integrated membrane separation processes for recycling of valuable wastewater streams: nanofiltration, membrane distillation, and membrane crystallizers revisited. Ind Eng Chem Res 52(31):10335–10341. https://doi.org/10.1021/ie302880a

    Article  Google Scholar 

  30. Gryta M (2009) Scaling diminution by heterogeneous crystallization in a filtration element integrated with membrane distillation module. Polish J Chem Technol 11(2):60–65. https://doi.org/10.2478/v10026-009-0026-x

    Article  Google Scholar 

  31. Gloede M, Melin T (2006) Potentials and limitations of molecular modelling approaches for scaling and scale inhibiting mechanisms. Desalination 199(1–3):26–28. https://doi.org/10.1016/j.desal.2006.03.012

    Article  Google Scholar 

  32. Sweity A, Ronen Z, Herzberg M (2014) Induced organic fouling with antiscalants in seawater desalination. Desalination 352:158–165. https://doi.org/10.1016/j.desal.2014.08.018

    Article  Google Scholar 

  33. Gryta M (2012) Polyphosphates used for membrane scaling inhibition during water desalination by membrane distillation. Desalination 285:170–176. https://doi.org/10.1016/j.desal.2011.09.051

    Article  Google Scholar 

  34. Woo YC et al (2018) Hierarchical composite membranes with robust omniphobic surface using layer-by-layer assembly technique. Environ Sci Technol 52(4):2186–2196. https://doi.org/10.1021/acs.est.7b05450

    Article  Google Scholar 

  35. Bogler A, Bar-Zeev E (2018) Membrane distillation biofouling: impact of feedwater temperature on biofilm characteristics and membrane performance. Environ Sci Technol 52(17):10019–10029. https://doi.org/10.1021/acs.est.8b02744

    Article  Google Scholar 

  36. Yao M et al (2020) A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination 479(October 2019):114312. https://doi.org/10.1016/j.desal.2020.114312

  37. Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19(6):550–555. https://doi.org/10.1016/j.copbio.2008.10.007

    Article  Google Scholar 

  38. Gryta M (2005) Long-term performance of membrane distillation process. J Memb Sci 265(1–2):153–159. https://doi.org/10.1016/j.memsci.2005.04.049

    Article  Google Scholar 

  39. Tijing LD, Woo YC, Choi JS, Lee S, Kim SH, Shon HK (2015) Fouling and its control in membrane distillation—a review. J Memb Sci 475:215–244. https://doi.org/10.1016/j.memsci.2014.09.042

    Article  Google Scholar 

  40. Zodrow KR, Bar-Zeev E, Giannetto MJ, Elimelech M (2014) Biofouling and microbial communities in membrane distillation and reverse osmosis. Environ Sci Technol 48(22):13155–13164. https://doi.org/10.1021/es503051t

    Article  Google Scholar 

  41. Skuse C, Gallego-Schmid A, Azapagic A, Gorgojo P (2021) Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination 500(October 2020):114844. https://doi.org/10.1016/j.desal.2020.114844

  42. Goh S et al (2013) Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process. J Memb Sci 438:140–152. https://doi.org/10.1016/j.memsci.2013.03.023

    Article  Google Scholar 

  43. Antony A, Low JH, Gray S, Childress AE, Le-Clech P, Leslie G (2011) Scale formation and control in high pressure membrane water treatment systems: a review. J Memb Sci 383(1–2):1–16. https://doi.org/10.1016/j.memsci.2011.08.054

    Article  Google Scholar 

  44. Jiang L, Chen L, Zhu L (2020) Fouling process of membrane distillation for seawater desalination: an especial focus on the thermal-effect and concentrating-effect during biofouling. Desalination 485(December 2019):114457. https://doi.org/10.1016/j.desal.2020.114457

  45. Gryta M (2008) Alkaline scaling in the membrane distillation process. Desalination 228(1–3):128–134. https://doi.org/10.1016/j.desal.2007.10.004

    Article  Google Scholar 

  46. Yang Y, Bogler A, Ronen Z, Oron G, Herzberg M, Bernstein R (2020) Initial deposition and pioneering colonization on polymeric membranes of anaerobes isolated from an anaerobic membrane bioreactor (AnMBR). Environ Sci Technol 54(9):5832–5842. https://doi.org/10.1021/acs.est.9b06763

    Article  Google Scholar 

  47. Gryta M (2010) Desalination of thermally softened water by membrane distillation process. Desalination 257(1–3):30–35. https://doi.org/10.1016/j.desal.2010.03.012

    Article  Google Scholar 

  48. Gryta M (2020) Separation of saline oily wastewater by membrane distillation. Chem Pap 74(7):2277–2286. https://doi.org/10.1007/s11696-020-01071-y

    Article  Google Scholar 

  49. Gryta M (2018) The effect of unfavourable process conditions on the water desalination by membrane distillation. Desalin Water Treat 128(June):1–10. https://doi.org/10.5004/dwt.2018.22568

    Article  Google Scholar 

  50. Jiang L, Chen L, Zhu L (2019) Electrically conductive membranes for anti-biofouling in membrane distillation with two novel operation modes: capacitor mode and resistor mode. Water Res 161:297–307. https://doi.org/10.1016/j.watres.2019.06.015

    Article  Google Scholar 

  51. Sabri S et al (2019) Antibacterial properties of polysulfone membranes blended with Arabic gum. Membranes 9(2):1–16. https://doi.org/10.3390/membranes9020029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Prasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishna, V.M.V.S., Prasanna, K. (2024). A Review of the Pre-treatments that Are Used in Membrane Distillation. In: Reddy, K.R., Ravichandran, P.T., Ayothiraman, R., Joseph, A. (eds) Recent Advances in Civil Engineering. ICC IDEA 2023. Lecture Notes in Civil Engineering, vol 398. Springer, Singapore. https://doi.org/10.1007/978-981-99-6229-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6229-7_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6228-0

  • Online ISBN: 978-981-99-6229-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics