Skip to main content

Knowledge Graph Completion with Fused Factual and Commonsense Information

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14094))

Included in the following conference series:

  • 668 Accesses

Abstract

Knowledge graph contains a large number of factual triples, but it is still inevitably incomplete. Previous commonsense-based knowledge graph completion models used concepts to replace entities in triplets to generate high-quality negative sampling and link prediction from the perspective of joint facts and commonsense. However, they did not consider the importance of concepts and their correlation with relationships, resulting in a lot of noise and ample room for improvement. To address this problem, we designed commonsense for knowledge graph completion and filtered the commonsense knowledge based on the analytic hierarchy process. The obtained commonsense can further improve the quality of negative samples and the effectiveness of link prediction. Experimental results on four datasets of the knowledge graph completion (KGC) task show that our method can improve the performance of the original knowledge graph embedding (KGE) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bollacker, K.D., Evans, C., Paritosh, P.K., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD Conference, pp. 1247–1250. ACM (2008)

    Google Scholar 

  2. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  3. Cai, H., Zhao, F., Jin, H.: Commonsense knowledge construction with concept and pretrained model. In: Zhao, X., Yang, S., Wang, X., Li, J. (eds.) WISA 2022. LNCS, vol. 13579, pp. 40–51. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20309-1_4

    Chapter  Google Scholar 

  4. Cai, L., Wang, W.Y.: KBGAN: adversarial learning for knowledge graph embeddings. In: NAACL-HLT, pp. 1470–1480. Association for Computational Linguistics (2018)

    Google Scholar 

  5. Chen, J., et al.: Adversarial caching training: unsupervised inductive network representation learning on large-scale graphs. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 7079–7090 (2022)

    Article  Google Scholar 

  6. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 494–514 (2022)

    Article  MathSciNet  Google Scholar 

  7. Joulin, A., van der Maaten, L., Jabri, A., Vasilache, N.: Learning visual features from large weakly supervised data. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 67–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_5

    Chapter  Google Scholar 

  8. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  9. Li, Z., et al.: Efficient non-sampling knowledge graph embedding. In: WWW, pp. 1727–1736. ACM/IW3C2 (2021)

    Google Scholar 

  10. Lin, B.Y., Chen, X., Chen, J., Ren, X.: KagNet: knowledge-aware graph networks for commonsense reasoning. In: EMNLP/IJCNLP (1), pp. 2829–2839. Association for Computational Linguistics (2019)

    Google Scholar 

  11. Liu, W., Daruna, A.A., Kira, Z., Chernova, S.: Path ranking with attention to type hierarchies. In: AAAI, pp. 2893–2900. AAAI Press (2020)

    Google Scholar 

  12. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: IJCAI, pp. 3137–3143. ijcai.org (2019)

    Google Scholar 

  13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (Workshop Poster) (2013)

    Google Scholar 

  14. Niu, G., Li, B., Zhang, Y., Pu, S.: CAKE: a scalable commonsense-aware framework for multi-view knowledge graph completion. In: ACL (1), pp. 2867–2877. Association for Computational Linguistics (2022)

    Google Scholar 

  15. Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: end-to-end differentiable rule mining on knowledge graphs. In: NeurIPS, pp. 15321–15331 (2019)

    Google Scholar 

  16. Sap, M., et al.: ATOMIC: an atlas of machine commonsense for if-then reasoning. In: AAAI, pp. 3027–3035. AAAI Press (2019)

    Google Scholar 

  17. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: AAAI, pp. 4444–4451. AAAI Press (2017)

    Google Scholar 

  18. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: ICLR (Poster). OpenReview.net (2019)

    Google Scholar 

  19. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: CVSC, pp. 57–66. Association for Computational Linguistics (2015)

    Google Scholar 

  20. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML. JMLR Workshop and Conference Proceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)

    Google Scholar 

  21. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119. AAAI Press (2014)

    Google Scholar 

  22. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: EMNLP, pp. 564–573. Association for Computational Linguistics (2017)

    Google Scholar 

  23. Zang, L., Cao, C., Cao, Y., Wu, Y., Cao, C.: A survey of commonsense knowledge acquisition. J. Comput. Sci. Technol. 28(4), 689–719 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Y., Yao, Q., Shao, Y., Chen, L.: NSCaching: simple and efficient negative sampling for knowledge graph embedding. In: ICDE, pp. 614–625. IEEE (2019)

    Google Scholar 

  25. Zhang, Z., Cai, J., Zhang, Y., Wang, J.: Learning hierarchy-aware knowledge graph embeddings for link prediction. In: AAAI, pp. 3065–3072. AAAI Press (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., Tang, J., Zeng, W., Wu, J., Huang, H. (2023). Knowledge Graph Completion with Fused Factual and Commonsense Information. In: Yuan, L., Yang, S., Li, R., Kanoulas, E., Zhao, X. (eds) Web Information Systems and Applications. WISA 2023. Lecture Notes in Computer Science, vol 14094. Springer, Singapore. https://doi.org/10.1007/978-981-99-6222-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6222-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6221-1

  • Online ISBN: 978-981-99-6222-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics