Skip to main content

Polymers and Polymeric Composites in Nano/Bio-Medicine

  • Chapter
  • First Online:
Integrated Nanomaterials and their Applications
  • 185 Accesses

Abstract

The new class of materials that has captured the attention of scientists is polymeric composite nanomaterials. Their special qualities, including high surface-to-volume ratios, simplicity in functionalization, and photothermal conversion, among others, make them extremely adaptable for a wide range of applications, from energy storage to optoelectronics to biological ones. Recent studies have demonstrated the effectiveness of polymers in tissue engineering, biosensing, drug administration, and cancer photothermal treatment (PTT). When combined with hydrogels and scaffolds, these materials can be made more biocompatible and can aid in treating a variety of illnesses and injuries. However, as two-dimensional nanomaterials-based polymeric composites for biomedical applications are a relatively new topic, there is a considerable amount of fragmented information available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumari S, Dhanda N, Thakur A, Gupta V, Singh S, Kumar R, Hameed S, Thakur A (2023) Nano Ca-Mg-Zn ferrite as tuneable photocatalysts for UV light induced degradation of rhodomine B dye and antimicrobial behaviour for water purification. Ceram Int 49(8):12469–12480

    Article  CAS  Google Scholar 

  2. Chahar D, Thakur P, Sun AC, Thakur A (2023) Investigation of structural, electrical and magnetic properties of nickel substituted Co-Zn nanoferrites. J Mater Sci Mater Electron 34:901

    Article  CAS  Google Scholar 

  3. Dementjev AP, Maslakov KI (2012) Chemical state of carbon atoms on a nanodiamond surface: growth mechanism of detonation nanodiamond. Fuller Nanotub Carbon Nanostructures 20:594–599

    Article  CAS  Google Scholar 

  4. Wu X, Wang Y, Liu J, He S, Zhang L (2012) Improved crack growth resistance and its molecular origin of natural rubber/carbon black by nanodispersed clay. Polym Eng Sci 52:1027–1036

    Article  CAS  Google Scholar 

  5. Bindu PH, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117(41):12632–12648

    Article  CAS  PubMed  Google Scholar 

  6. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem 48(42):7752–7777

    Article  CAS  Google Scholar 

  7. Wang H, Xie G, Fang M, Ying Z, Tong Y, Zeng Y (2015) Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Compos B Eng 79:444–450

    Article  CAS  Google Scholar 

  8. Mohan VB, Lau K, Hui D, Bhattacharyya D (2018) Graphene-based materials and their composites: a review on production, applications and product limitations. Compos B: Eng 142:200–220.

    Google Scholar 

  9. Chen W, Chen S, Hu W, Li D, Dai Z (2017) The preparation approaches of polymer/graphene nanocomposites and their appilcation research progress as electrochemical sensors. J New Mater Electrochem Syst

    Google Scholar 

  10. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B 49(12):832–864

    Article  CAS  Google Scholar 

  11. Cadek M, Coleman JP, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81(27):5123–5125

    Article  CAS  Google Scholar 

  12. Erukhimovich I, De La Cruz MO (2007) Phase equilibrium and charge fractionation in polyelectrolyte solutions. J Polym Sci B 45(21):3003–3009

    Article  CAS  Google Scholar 

  13. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes J, Cohen RC (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45(2):487–506

    Article  CAS  Google Scholar 

  14. Zhang Q, Gupta SK, Emrick T, Russell TP (2006) Surface-functionalized CdSe nanorods for assembly in Diblock copolymer templates. J Am Chem Soc 128(12):3898–3899

    Article  CAS  PubMed  Google Scholar 

  15. Verma R, Thakur P, Sun AC, Thakur A (2023) Investigation fo structural, microstructural and electrical characteristics of hydrothermally synthesized Li0.5-0.5xCoxFe2.5-0.5xO4 (0.0≤x≤0.4) ferrite nanoparticles. Phys B Condens Matter 661:414926

    Article  CAS  Google Scholar 

  16. Chen B, Evans JR (2006) Elastic moduli of clay platelets. Scr Mater 54:1581–1585

    Article  CAS  Google Scholar 

  17. Verma R, Chauhan A, Kumari S, Jasrotia R, Ali A, Gopalakrishnan C, Kumar R, Ghotekar S (2023) Green synthesis of ZnO NPs using Timbur (Zanthoxylum armatum DC.) plant extract for antimicrobial and dye degradation applications. Chemical Paper:1–11

    Google Scholar 

  18. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004b) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  19. Kala D, Gupta S, Kaushal A (2022) Nanotechnology in healthcare. In: Thakur A, Thakur P, Khurana SP (eds) Synthesis and applications of nanoparticles. Springer, Singapore

    Google Scholar 

  20. Zhou Z, Joslin S, Dellinger A, Ehrich M, Brooks B, Ren Q, Rodeck U, Lenk RP, Kepley CL (2010) A novel class of compounds with cutaneous wound healing properties. J Biomed Nanotechnol 6(5):605–611

    Article  CAS  PubMed  Google Scholar 

  21. Khan MI, Abdelhamid HN, Wu H (2015) Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf B: Biointerfaces 127:281–291

    Article  Google Scholar 

  22. Tang Z, Shen S, Zhuang J, Wang X (2010) Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem 49(27):4603–4607

    Article  CAS  Google Scholar 

  23. Dhanda N, Thakur P, Kumar R, Fatima T, Hameed S, Slimani Y, Sun AD, Thakur A (2023) Green synthesis of Ni-Co nanoferrites using aloe vera extract: structural, optical, magnetic, antimicrobial studies. Appl Organomet Chem 2023:1–13

    Google Scholar 

  24. Pastar I, Nusbaum AG, Gil J, Patel S, Chen J, Valdes J, Stojadinovic O, Plano LRW, Tomic-Canic M, Davis SM (2013) Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS One 8(2):e56846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peterson LR (2009) Bad bugs, no drugs: no ESCAPE revisited. Clin Infect Dis 49(6):992–993

    Article  PubMed  Google Scholar 

  26. Vaia RA, Ishii HA, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5(12):1694–1696

    Article  CAS  Google Scholar 

  27. Dhanda N, Thakur P, Sun AC, Thakur A (2023) Structural, optical, and magnetic properties along with antifungal activity of Ag-doped Ni-Co nanoferrites synthesized by eco-friendly route. J Magn Magn Mater 572:170598

    Article  CAS  Google Scholar 

  28. Vashist A, Kaushik AK, Ghosal A, Bala J, Nikkhah-Moshaie R, Wani AW, Manickam P, Nair MN (2018) Nanocomposite hydrogels: advances in nanofillers used for nanomedicine. Gels 4:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang C, Cheng Q (2017) Learning from nacre: constructing polymer nanocomposites. Compos Sci Technol 150:141–166

    Article  CAS  Google Scholar 

  30. Sun X, Liu Z, Welsher K, Robinson JA, Goodwin AL, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HS, Li L, Tan LP (2011) Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun 47(18):5235

    Article  CAS  Google Scholar 

  32. Thakur A, Thakur P (2023) Ferrite nanoparticles for agriculture related activity. In. Applications of nanostructured Ferrites. Woodhead Publishing. 315–350

    Google Scholar 

  33. Delavary BM, Van Der Veer WM, Van Egmond M, Niessen F, Beelen RH (2011) Macrophages in skin injury and repair. Immunobiology 216(7):753–762

    Article  CAS  Google Scholar 

  34. Wu C, Mohammadmoradi S, Chen JZY, Sawada H, Daugherty A, Lu H (2018) Renin-angiotensin system and cardiovascular functions. Arterioscler Thromb Vasc Biol 38:7

    Article  Google Scholar 

  35. Siddiqui AM, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28(5):519–526

    Article  PubMed  Google Scholar 

  36. Lane DP, Philippou H, Huntington JA (2005) Directing thrombin. Blood 106(8):2605–2612

    Article  CAS  PubMed  Google Scholar 

  37. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  38. Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int 2013:1–7

    Google Scholar 

  39. Giang J, Seelen MA, Van Doorn MBA, Rissmann R, Prens EP, Damman J (2018) Complement activation in inflammatory skin diseases. Front Immunol 9:639

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Müller WE, Roers A, Eming SA (2010) Differential roles of macrophages in diverse phases of skin repair. Pubmed 184(7):3964–3977

    CAS  Google Scholar 

  41. Porcheray F, Viaud S, Rimaniol A, Léone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142(3):481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Werner S, Krieg T, Smola H (2007) Keratinocyte–fibroblast interactions in wound healing. J Investig Dermatol 127(5):998–1008

    Article  CAS  PubMed  Google Scholar 

  43. Tonnesen MG, Feng X, Clark RF (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46

    Article  CAS  PubMed  Google Scholar 

  44. Santoro M, Gaudino G (2005) Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res 304(1):274–286

    Article  CAS  PubMed  Google Scholar 

  45. Keck M, Lumenta DB, Andel H, Kamolz L, Frey M (2009) Burn treatment in the elderly. Burns 35(8):1071–1079

    Article  CAS  PubMed  Google Scholar 

  46. Schexnailder PJ, Gaharwar AK, Bartlett RL II, Seal BL, Schmidt G (2010) Tuning cell adhesion by incorporation of charged silicate nanoparticles as cross-linkers to polyethylene oxide. Macromol Biosci 10(12):1416–1423

    Article  CAS  PubMed  Google Scholar 

  47. Khodaii Z, Afrasiabi S, Hashemi S, Ardeshirylajimi A, Natanzi M (2019) Accelerated wound healing process in rat by probiotic lactobacillus reuteri derived ointment. J Basic Clin Physiol Pharmacol 30(3):20180150

    Article  Google Scholar 

  48. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, Høiby N, Givskov M (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10

    Article  PubMed  Google Scholar 

  49. Swift ME, Burns AL, Gray KL, DiPietro LA (2001) Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol 117(5):1027–1035

    Article  CAS  PubMed  Google Scholar 

  50. Miranda O, Srinivasan G (2016) Advanced trends in treatment of wounds. Curr Sci 111:641–647

    Article  CAS  Google Scholar 

  51. Daunton C, Kothari S, Smith LE, Steele DA (2012) A history of materials and practices for wound management. Wound Pract Res: Journal of the Australian Wound Management Association 20:174

    Google Scholar 

  52. Szycher M, Lee SJ (1992) Modern wound dressings: a systematic approach to wound healing. J Biomater Appl 7(2):142–213

    Article  CAS  PubMed  Google Scholar 

  53. Chhabra S, Chhabra N, Kaur A, Gupta N (2017) Wound healing concepts in clinical practice of OMFS. J Maxillofac Oral Surg 16(4):403–423

    Article  PubMed  Google Scholar 

  54. Ramos-e-Silva M, Ribeiro de Castro MC (2002) New dressings, including tissue-engineered living skin. Clin Dermatol 20(6):715–723

    Article  PubMed  Google Scholar 

  55. Grada A, Mervis J, Falanga V (2018) Research techniques made simple: animal models of wound healing. J Invest Dermatol 138(10):2095–2105.e1

    Article  CAS  PubMed  Google Scholar 

  56. Boyce ST, Lalley AL (2018) Tissue engineering of skin and regenerative medicine for wound care. Burns Trauma 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chahar D, Kumar D, Thakur P, Thakur A (2023) Visible light induced Mg-doped Co-Zn nanoferrites. Mater Res Bull 162:112205

    Article  CAS  Google Scholar 

  58. Manjubala I, Scheler S, Bössert J, Jandt KD (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2(1):75–84

    Article  CAS  PubMed  Google Scholar 

  59. Shahdeo D, Kesarwani V, Suhag D, Ahmed J, Alshehri SM, Gandhi S (2021) Self-assembled chitosan polymer intercalating peptide functionalized gold nanoparticles as nanoprobe for efficient imaging of urokinase plasminogen activator receptor in cancer diagnostics. Carbohydr Polym 266:118138

    Article  CAS  PubMed  Google Scholar 

  60. Anjum S, Arora A, Alam MS, Gupta B (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 508(1–2):92–101

    Article  CAS  PubMed  Google Scholar 

  61. Shakeel A, Singh A, Das S, Suhag D, Sharma AK, Rajput SK, Mukherjee M (2017c) Synthesis and morphological insight of new biocompatible smart hydrogels. J Polym Res 24(7). https://doi.org/10.1007/s10965-017-1267-7

  62. Suhag D, Bhatia R, Das S, Shakeel A, Ghosh AB, Singh A, Sinha OP, Chakrabarti SK, Mukherjee M (2015) Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery. RSC Adv 5(66):53963–53972

    Article  CAS  Google Scholar 

  63. Raucci MG, Alvarez-Perez MA, Demitri C, Sannino A, Ambrosio L (2012) Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels. J Appl Biomater Funct Mater 10(3):302–307

    CAS  PubMed  Google Scholar 

  64. Sangam S, Garg P, Sanyal T, Pahari S, Khurana SMP, Mukherjee M (2022) Graphene quantum dots and their hybrid hydrogels: a multifaceted platform for Theranostic applications. In: Thakur A, Thakur P, Khurana SP (eds) Synthesis and applications of nanoparticles. Springer, Singapore

    Google Scholar 

  65. Boonkaew B, Kempf M, Kimble RM, Supaphol P, Cuttle L (2014) Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: ActicoatTM and PolyMem Silver®. Burns 40(1):89–96

    Article  PubMed  Google Scholar 

  66. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E (2015) Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano 9(5):4686–4697

    Article  CAS  PubMed  Google Scholar 

  67. Ishihara M, Ono K, Sato M, Nakanishi K, Saito Y, Yura H, Matsui T, Hattori H, Fujita M, Kikuchi M, Kurita A (2001) Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair Regen 9(6):513–521

    Article  CAS  PubMed  Google Scholar 

  68. Ishihara M, Obara K, Ishizuka T, Fujita M, Sato M, Masuoka K, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect onin vivo vascularization. J Biomed Mater Res 64A(3):551–559

    Article  CAS  Google Scholar 

  69. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33(11):1088–1118

    Article  CAS  Google Scholar 

  70. Haraguchi K (2007) Nanocomposite gels: new advanced functional soft materials. Macromol Symp 256(1):120–130

    Article  CAS  Google Scholar 

  71. Vivaldini SM, Ribeiro RM, Mosimann G Jr, Kr T, Pereira GFM, De Araújo WN (2021) A real-life study of the positive response to DAA-based therapies for hepatitis C in Brazil. Braz J Infect Dis 25(2):101573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bharti MK, Gupta S, Chalia S, Garg I, Thakur P, Thakur A (2020) Potential of magnetic nanoferrites in removal of heavy metals from contaminated water: mini review. J Supercond Nov Magn 33:3657–3665

    Article  Google Scholar 

  73. Mottaghitalab F, Farokhi M, Zaminy A, Kokabi M, Soleimani M, Mirahmadi F, Sadeghizadeh M (2013) A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS One 8(9):e74417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang YC, Hsu SH, Kuo WC, Chang-Chien CL, Cheng H, Huang YY (2011) Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth. J Biomed Mater Res A 99(1):86–93

    Article  PubMed  Google Scholar 

  75. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4(6):3181–3186

    Article  CAS  PubMed  Google Scholar 

  76. Agarwal S, Zhou X, Ye F, He Q, Chen GC, Soo J, Chen P (2010) Interfacing live cells with nanocarbon substrates. Langmuir 26(4):2244–2247

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Suhag, D. (2023). Polymers and Polymeric Composites in Nano/Bio-Medicine. In: Suhag, D., Thakur, A., Thakur, P. (eds) Integrated Nanomaterials and their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-6105-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6105-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6104-7

  • Online ISBN: 978-981-99-6105-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics