Skip to main content

A Review on Simplified Image Analysis Method for Measuring LNAPL Saturation Under Groundwater Table Fluctuation

  • Conference paper
  • First Online:
Proceedings of AWAM International Conference on Civil Engineering 2022 - Volume 3 (AICCE 2022)

Abstract

The leaking from surface spills and underground storage tanks of various light non-aqueous phase liquids (LNAPLs) caused hazardous contamination to the subsurface system, especially in case of groundwater table fluctuations. The toxicity of these compounds has made infeasible field studies and gets a replacement with laboratory studies. Researchers have recently become very interested in using image analysis techniques to measure the saturation migration of groundwater and LNAPLs. Over the last decade, the simplified image analysis method (SIAM) has become increasingly popular. SIAM has been proved to be a suitable and effective tool for characterization and measuring LNAPL migration in the subsurface system. This research introduces a review of the recent studies and published on the simplified image analysis method for LNAPL migration measurements. The experimental approaches in this study can be viewed as an important intermediary between column studies and tank studies. Besides discussion on the research efforts, recommendations for future research are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, J., Zhang, W., Wan, Z., Li, S., Huang, T., Fei, Y.: Oil spills from global tankers: status review and future governance. J. Clean. Prod. 227, 20–32 (2019)

    Article  Google Scholar 

  2. Yekeen, S., Balogun, A., Aina, Y.: Early warning systems and geospatial tools: managing disasters for urban sustainability. In: Sustainable Cities and Communities, pp. 1–13. Springer International Publishing, Cham, Switzerland (2019)

    Google Scholar 

  3. Michel, J., Fingas, M.: Oil spills: causes, consequences, prevention, and countermeasures. In: Fossil Fuels. Research Planning, Inc., Columbia, SC, USA (2015)

    Google Scholar 

  4. Pelta, R., Carmon, N., Ben-Dor, E.: A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing. Int. J. Appl. Earth Obs. Geoinf. 82, 101901 (2019)

    Google Scholar 

  5. Jiao, Z., Jia, G., Cai, Y.: A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles. Comput. Ind. Eng. 135, 1300–1311 (2019)

    Article  Google Scholar 

  6. Nwachukwu, A.N., Osuagwu, J.C.: Effects of oil spillage on groundwater quality in Nigeria. Am. J. Eng. Res. AJER 3, 271–274 (2014)

    Google Scholar 

  7. Mignucci-Giannoni, A.: Assessment and rehabilitation of wildlife affected by an oil spill in Puerto Rico. Environ. Pollut. 104, 323–333 (1999)

    Article  Google Scholar 

  8. Fingas, M.: The Basics of Oil Spill Cleanup. CRC Press, Boca Raton, FL, USA (2012)

    Google Scholar 

  9. National Research Council.: Oil in the Sea III: Inputs, Fates, and Effects. National Academies Press (US), Washington, DC, USA (2003)

    Google Scholar 

  10. Li, P., Cai, Q., Lin, W., Chen, B., Zhang, B.: Offshore oil spill response practices and emerging challenges. Mar. Pollut. Bull. 110, 6–27 (2016)

    Article  Google Scholar 

  11. Westerholm, D.A., Rauch, S.D., III, Kennedy, D.M., Basta, D.J.: Deepwater horizon oil spill: final programmatic damage assessment and restoration plan and final programmatic environmental impact statement. In: Natural Resources Science Plan 2011–2015. Springer, Berlin/Heidelberg, Germany (2011)

    Google Scholar 

  12. Piatt, J.F., Lensink, C.J., Butler, W., Nysewander, D.R.: Immediate impact of the ‘Exxon Valdez’ oil spill on marine birds. Auk 107, 387–397 (1990)

    Article  Google Scholar 

  13. Nevalainen, M., Helle, I., Vanhatalo, J.P.: Estimating the acute impacts of Arctic marine oil spills using expert elicitation. Mar. Pollut. Bull. 131, 782–792 (2018)

    Article  Google Scholar 

  14. Prabowo, A.R., Bae, D.M.: Environmental risk of maritime territory subjected to accidental phenomena: correlation of oil spill and ship grounding in the Exxon Valdez’s case. Results Eng. 4, 100035 (2019)

    Article  Google Scholar 

  15. Amir-Heidari, P., Arneborg, L., Lindgren, J.F., Lindhe, A., Rosén, L., Raie, M., Axell, L., Hassellöv, I.-M.: A state-of-the-art model for spatial and stochastic oil spill risk assessment: a case study of oil spill from a shipwreck. Environ. Int. 126, 309–320 (2019)

    Article  Google Scholar 

  16. Grubesic, T.H., Nelson, J.R., Wei, R.: A strategic planning approach for protecting environmentally sensitive coastlines from oil spills: allocating response resources on a limited budget. Mar. Policy 108, 103549 (2019)

    Article  Google Scholar 

  17. Fan, C., Hsu, C.-J., Lin, J.-Y., Kuan, Y.-K., Yang, C.-C., Liu, J.-H., Yeh, J.-H.: Taiwan’s legal framework for marine pollution control and responses to marine oil spills and its implementation on T.S. Taipei cargo shipwreck salvage. Mar. Pollut. Bull. 136, 84–91 (2018)

    Google Scholar 

  18. Bullock, R.J., Perkins, R.A., Aggarwal, S.: In-situ burning with chemical herders for Arctic oil spill response: meta-analysis and review. Sci. Total Environ. 675, 705–716 (2019)

    Article  Google Scholar 

  19. Sardi, S.S., Qurban, M.A., Li, W., Kadinjappalli, K.P., Manikandan, K.P., Hariri, M.M., Al-Tawabini, B.S., Khalil, A.B., El-Askary, H.: Assessment of areas environmentally sensitive to oil spills in the western Arabian Gulf, Saudi Arabia, for planning and undertaking an effective response. Mar. Pollut. Bull. 150, 110588 (2019)

    Google Scholar 

  20. Lenhard, R.J., Rayner, J.L., García-Rincón, J.: Testing an analytical model for predicting subsurface LNAPL distributions from current and historic fluid levels in monitoring wells: a preliminary test considering hysteresis. Water 11, 2404 (2019). https://doi.org/10.3390/w11112404

    Article  Google Scholar 

  21. US.EPA.: A decision-making framework for cleanup of sites impacted with light non-aqueous phase liquids (LNAPL). Us.Epa. 542-R-04-0, 86 (2005)

    Google Scholar 

  22. CRC CARE.: A practitioner’s guide for the analysis, management and remediation of LNAPL cooperative research centre for contamination assessment and remediation of the environment, technical report series (2015)

    Google Scholar 

  23. Chevalier, L.R., Petersen, J.: Literature review of 2-D laboratory experiments in NAPL flow, transport, and remediation. Soil Sediment Contam. 8, 149–167 (1999). https://doi.org/10.1080/10588339991339289

    Article  Google Scholar 

  24. Saleem, M., Al-Suwaiyan, M.S., Aiban, S.A., Ishaq, A.M., Al-Malack, M.H., Hussain, M.: Estimation of spilled hydrocarbon volume—the state-of-the-art. Environ. Technol. 25, 1077–1090 (2004). https://doi.org/10.1080/09593330.2004.9619401

    Article  Google Scholar 

  25. Oostrom, M., Hofstee, C., Wietsma, T.W.: Behavior of a viscous LNAPL under variable water table conditions. Soil Sediment Contam. 15, 543–564 (2006). https://doi.org/10.1080/15320380600958976

    Article  Google Scholar 

  26. Oostrom, M., Dane, J.H., Wietsma, T.W.: A review of multidimensional, multifluid, intermediate-scale experiments: flow behavior, saturation imaging, and tracer detection and quantification. Vadose Zo. J. 6, 610–637 (2007). https://doi.org/10.2136/vzj2006.0178

    Article  Google Scholar 

  27. Zhao, S., Wang, J., Feng, S., Xiao, Z., Chen, C.: Effects of ecohydrological interfaces on migrations and transformations of pollutants: a critical review. Sci. Total Environ. 804, 150140 (2022). https://doi.org/10.1016/j.scitotenv.2021.150140

    Article  Google Scholar 

  28. Cavelan, A., Golfier, F., Colombano, S., Davarzani, H., Deparis, J., Faure, P.: A critical review of the influence of groundwater level fluctuations and temperature on LNAPL contaminations in the context of climate change. Sci. Total Environ. 806 (2022). https://doi.org/10.1016/j.scitotenv.2021.150412

  29. Alazaiza, M.Y.D., Ngien, S.K., Bob, M.M., Kamaruddin, S.A., Ishak, W.M.F.: Non-aqueous phase liquids distribution in three-fluid phase systems in double-porosity soil media: experimental investigation using image analysis. Groundwater Sustain. Dev. 7, 133–142 (2018). https://doi.org/10.1016/j.gsd.2018.04.002

    Article  Google Scholar 

  30. Huang, Y., Wang, P., Fu, Z., Shen, H.: Experimental and numerical research on migration of LNAPL contaminants in fractured porous media. Hydrogeol. J. 28, 1269–1284 (2020). https://doi.org/10.1007/s10040-020-02118-w

    Article  Google Scholar 

  31. Badv, K., Mohammad Seyyedi, B., Nimtaj, A.: Numerical investigation of propagation of BTEX compounds in soil. Geotech. Geol. Eng. 38, 3875–3890 (2020). https://doi.org/10.1007/s10706-020-01263-z

    Article  Google Scholar 

  32. Foong, L.K., Rahman, N.A., Nazir, R., Sa’ari, R., Mustaffar, M.: Investigation of aqueous and non-aqueous phase liquid migration in double-porosity soil using digital image analysis. Chem. Eng. Trans. 63, 685–690 (2018). https://doi.org/10.3303/CET1863115

  33. Crawford, R.L., Alcock, J., Couvreur, J.F., Dunk, M., Fombarlet, C., Frieyro, O., Lethbridge, G., Mitchell, T., Molinari, M., Ruiz, H., Walden, T., Martin, D.E.: European oil industry guideline for risk-based assessment of contaminated sites (revised). CONCAWE Rep. (2003)

    Google Scholar 

  34. Alesse, B., Orlando, L., Palladini, L.: Non-invasive lab test in the monitoring of vadose zone contaminated by light non-aqueous phase liquid. Geophys. Prospect. 67, 2161–2175 (2019). https://doi.org/10.1111/1365-2478.12809

    Article  Google Scholar 

  35. Mercer, J.W., Cohen, R.M., Va, U.S.A.: Review Paper a Review of Immiscible Fluids in the Subsurface: Properties, Models, Characterization and Remediation [Nonaqueous phase liquids (NAPL’s) have been discovered at numerous hazardous waste sites (e.g., Faust, 1985; Mercer et al., 19. J. Contam. Hydrol. 6, 107–163)] (1990)

    Google Scholar 

  36. Kacem, M., Esrael, D., Boeije, C.S., Benadda, B.: Multiphase flow model for NAPL infiltration in both the unsaturated and saturated zones. J. Environ. Eng. 145, 04019072 (2019). https://doi.org/10.1061/(asce)ee.1943-7870.0001586

    Article  Google Scholar 

  37. Azimi, R., Vaezihir, A., Lenhard, R.J., Majid Hassanizadeh, S.: Evaluation of LNAPL behavior in water table inter-fluctuate zone under groundwater drawdown condition. Water (Switzerland) 12 (2020). https://doi.org/10.3390/W12092337

  38. Yang, Y.S., Li, P., Zhang, X., Li, M., Lu, Y., Xu, B., Yu, T.: Lab-based investigation of enhanced BTEX attenuation driven by groundwater table fluctuation. Chemosphere 169, 678–684 (2017). https://doi.org/10.1016/j.chemosphere.2016.11.128

    Article  Google Scholar 

  39. Charbeneau, R.: LNAPL Distribution and Recovery Model. Distribution and Recovery of Petroleum Hydrocarbon Liquids in Porous Media, vol. 1, p. 4760. API Publication (2007)

    Google Scholar 

  40. Jeong, J., Charbeneau, R.J.: An analytical model for predicting LNAPL distribution and recovery from multi-layered soils. J. Contam. Hydrol. 156, 52–61 (2014). https://doi.org/10.1016/j.jconhyd.2013.09.008

  41. Kechavarzi, C., Soga, K., Illangasekare, T.H.: Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone (2005). J. Contam. Hydrol. 76, 211–233 (2004). https://doi.org/10.1016/j.jconhyd

  42. Kemblowski, M.W., Chiang, C.Y.: Hydrocarbon thickness fluctuations in monitoring wells. Groundwater 28, 244–252 (1990). https://doi.org/10.1111/j.1745-6584.1990.tb02252.x

    Article  Google Scholar 

  43. Lenhard, R.J., Johnson, T.G., Parker, J.C.: Experimental observations of nonaqueous phase liquid subsurface movement. J. Contam. Hydrol. 12, 79–101 (1993). https://doi.org/10.1016/0169-7722(93)90016-L

  44. Parker, J.C., Lenhard, R.J.: A model for hysteretic constitutive relations governing multiphase flow: 1. saturation-pressure relations. Water Resour. Res. 23, 2187–2196 (1987). https://doi.org/10.1029/WR023i012p02187

  45. Sookhak Lari, K., Johnston, C.D., Davis, G.B.: Gasoline multiphase and multicomponent partitioning in the vadose zone: dynamics and risk longevity. Vadose Zone J. 15, 1–15

    Google Scholar 

  46. Van Geel, P.J., Sykes, J.F.: The importance of fluid entrapment, saturation hysteresis and residual saturations on the distribution of a lighter-than-water non-aqueous phase liquid in a variably saturated sand medium. J. Contam. Hydrol. 25, 249–270 (1997). https://doi.org/10.1016/S0169-7722(96)00038-1

    Article  Google Scholar 

  47. ITRC.: LNAPL site management: LCSM evolution, decision process, and remedial technologies. LNAPL-3. Interstate Technology & Regulatory Council, Washington, DC

    Google Scholar 

  48. Flores, G., Katsumi, T., Inui, T., Kamon, M.: A simplified image analysis method to study lnapl migration in porous media. Soils Found. 51, 835–847 (2011). https://doi.org/10.3208/sandf.51.835

    Article  Google Scholar 

  49. Ramli, M.H.: Dynamic Effects on Migration of Light Non-Aqueous Phase Liquids in Subsurface. Dissertation. Kyoto University (2014). https://doi.org/10.14989/doctor.k18487

  50. Skoog, D.A., Holler, F.J., Crouch, S.R.: Principles of Instrumental Analysis. Thomsom Brooks/Cole, Belmont (2007)

    Google Scholar 

  51. Kechavarzi, C., Soga, K., Wiart, P.: Multispectral image analysis method to determine dynamic fluid saturation distribution in two-dimensional three-fluid phase two laboratory experiments. J. Contam. Hydrol. 46(3–4), 265–293 (2000)

    Article  Google Scholar 

  52. Flores, G., Katsumi, T., Eua-Apiwatch, S., Lautua, S., Inui, T.: Effects of repeated drainage and imbibition on the contamination behavior of a LNAPL and on its S-p relation. J. Geo-Eng. Sci. 3, 15–30 (2016). https://doi.org/10.3233/jgs-150033

    Article  Google Scholar 

  53. Flores, G., Katsumi, T., Inui, T., Ramli, H.: Characterization of LNAPL distribution in whole domains subject to precipitation by the simplified image analysis method. Coupled Phenom. Environ. Geotech. Theor. Exp. Res. Pract. Appl. Proc. Int. Symp. ISSMGE TC 215, 573–577 (2013). https://doi.org/10.1201/b15004-76

  54. Sudsaeng, S., Flores, G., Katsumi, T., Inui, T., Likitlersuang, S., Yimsiri, S.: Experimental study of diesel migration in P orous Media by Simplified Image Analysis Method. Geo-Environmental Engineering 2011 Kagawa National College of Technology, Takamatsu, Japan, May 21–22 2011

    Google Scholar 

  55. Flores, G., Tkatsumi, T., Inui, T., Takai, A.: Measurement of NAPL saturation distribution in whole domains by the simplified image analysis method. In: 18th International Conference on Soils Mechanics and Geotechnical Engineering (ICSMGE). Challenges Innov. Geotech. 4, 3017–3020 (2013)

    Google Scholar 

  56. Flores, G., Katsumi, T., Eua-Apiwatch, S., Lautua, S., Inui, T.: Migration of different LNAPLs in subsurface under groundwater fluctuating conditions by the simplified image analysis method. J. Geo-Eng. Sci. 3, 15–30 (2016). https://doi.org/10.3233/jgs-150033

    Article  Google Scholar 

  57. Alazaiza, M.Y.D., Ramli, M.H., Copty, N.K., Ling, M.C.: Assessing the impact of water infiltration on LNAPL mobilization in sand column using simplified image analysis method. J. Contam. Hydrol. 238, 103769 (2021). https://doi.org/10.1016/j.jconhyd.2021.103769

    Article  Google Scholar 

  58. Alazaiza, M.Y.D., AI Maskari, T., Albahansawi, A., Amr, S.S.A., Abushammala, M.F.M., Aburas, M.: Diesel migration and distribution in capillary fringe using different spill volumes via image analysis. Fluids 6, 1–11 (2021). https://doi.org/10.3390/fluids6050189

  59. Alazaiza, M.Y.D., Ramli, M.H., Copty, N.K., Sheng, T.J., Aburas, M.M.: LNAPL saturation distribution under the influence of water table fluctuations using simplified image analysis method. Bull. Eng. Geol. Environ. 79, 1543–1554 (2020). https://doi.org/10.1007/s10064-019-01655-3

    Article  Google Scholar 

  60. Ramli, H., Flores, G.: The migration of LNAPL in subsurface affected by spill volume and precipitation. Int. Conf. Contam. Sites 2016, 96–100 (2016)

    Google Scholar 

  61. Sudsaeng, S., Yimsiri, S., Flores, G., Katsumi, T., Inui, T., Likitlersuang, S.: Diesel migration in sand under groundwater movements. In: 5th Asia-Pacific Conference on Unsaturated Soils, vol. 2, pp. 493–498 (2012)

    Google Scholar 

  62. Yimsiri, S., Euaapiwatch, S., Flores, G., Katsumi, T., Likitlersuang, S.: Effects of water table fluctuation on diesel fuel migration in one-dimensional laboratory study. Eur. J. Environ. Civ. Eng. 22, 359–385 (2018). https://doi.org/10.1080/19648189.2016.1197158

    Article  Google Scholar 

  63. Ramli, H., Lee, Z.X., Azmi, M., Ahmad, F.: Capillary rise determination using simplified image analysis method. E3S Web of Conf. 195, 03017 (2020). https://doi.org/10.1051/e3sconf/202019503017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harris Ramli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almaliki, D.F., Ramli, H. (2024). A Review on Simplified Image Analysis Method for Measuring LNAPL Saturation Under Groundwater Table Fluctuation. In: Sabtu, N. (eds) Proceedings of AWAM International Conference on Civil Engineering 2022 - Volume 3. AICCE 2022. Lecture Notes in Civil Engineering, vol 386. Springer, Singapore. https://doi.org/10.1007/978-981-99-6026-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6026-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6025-5

  • Online ISBN: 978-981-99-6026-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics