Skip to main content

Literature Analysis on Pollutant Removal Using Microalgae (Chlorella vulgaris) in Different Wastewater Treatment

  • Conference paper
  • First Online:
Proceedings of AWAM International Conference on Civil Engineering 2022—Volume 1 (AICCE 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 384))

Included in the following conference series:

  • 77 Accesses

Abstract

In today's world, wastewater is a common body of water that can be found almost anywhere. It can be found in textile mill effluent, factories, palm oil mill effluent, homes, and even restaurants. As the world's population and industrialization expand, so does the amount of wastewater produce. The contents of wastewater may cause unwelcome algae blooms, eutrophication, and contamination of water sources, posing a risk to the health of humans and aquatic animals. Chlorella vulgaris is a sustainable and cost-effective method for removing contaminants from wastewater, including nutrients [total nitrogen (TN) and total phosphorus (TP)], organic matter [biological oxygen demand (BOD), and chemical oxygen demand (COD)]. It has been discovered that it can withstand a wide range of environmental conditions, including temperature, photoperiod, and pH, making it the most promising candidate for removing the pollutant from wastewater. The findings showed that C. vulgaris effectively removes contaminants, with the majority of them eliminating more than 60% of them under various growing conditions and operations. The results demonstrated that microalgae-based wastewater treatment using the microalgae C. vulgaris can be used in conjunction with traditional wastewater treatment or innovative sustainable technologies to improve water quality. The goal of this review study is to identify and investigate the factors that influence C. vulgaris growth rate and efficiency in removing contaminants from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akpor, B.I., Otohinoyi, O.B., Olaolu, D.A., Aderiye, T.D.: Pollutants in wastewater: impacts and remediation process. J. Hell. Vet. Med. Soc. 65(2), 115–120 (2014)

    Google Scholar 

  2. Razak, A.R.B.A.: Removal of nutrients and heavy metals from domestic and industry using Botryococcus Sp. J. Chem. Inf. Model. (2017) [Online]. Available: https://sci-hub.se/10.1016/B978-075067838-4/50015-4

  3. Kumar, P.K., Vijaya Krishna, S., Verma, K., Pooja, K., Bhagawan, D., Himabindu, V.: Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. South Afr. J. Chem. Eng. 25, 133–146 (2018). https://doi.org/10.1016/j.sajce.2018.04.006

  4. Edokpayi, J.N., Odiyo, J.O., Durowoju, O.S.: Impact of wastewater on surface water quality in developing countries: a case study of South Africa. Water Qual. 1–18 (2017). https://doi.org/10.5772/66561

  5. Cavieres, L., et al.: Pilot-scale phycoremediation using Muriellopsis sp. For wastewater reclamation in the Atacama Desert: microalgae biomass production and pigment recovery. Water Sci. Technol. 83(2), 331–343 (2021). https://doi.org/10.2166/wst.2020.576

    Article  Google Scholar 

  6. Gani, P., et al.: Phycoremediation of dairy wastewater by using green microlgae: Botryococcus Sp. Appl. Mech. Mater. 773–774(January), 1318–1323 (2015). https://doi.org/10.4028/www.scientific.net/amm.773-774.1318

    Article  Google Scholar 

  7. Sharif, A.: Microbial degradation of textile industry effluents: a review. Pure Appl. Biol. 9(4), 2361–2382 (2020). https://doi.org/10.19045/bspab.2020.90251

    Article  Google Scholar 

  8. Yadav, G., et al.: Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel 285(April 2020), 119093 (2021). https://doi.org/10.1016/j.fuel.2020.119093

  9. Chalivendra, S.: Bioremediation of wastewater using microalgae dissertation submitted to The School of Engineering of the university of Dayton. In: Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Materials Engineering By Saikumar Chalivendr (2014)

    Google Scholar 

  10. Gómez-Guzmán, A., et al.: Evaluation of nutrients removal (NO3-N, NH3-N and PO4-P) with Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and a consortium of these microorganisms in the treatment of wastewater effluents. Water Sci. Technol. 76(1), 49–56 (2017). https://doi.org/10.2166/wst.2017.175

    Article  Google Scholar 

  11. Ramli, N.A., Hamid, M.F.A.: Analysis of energy efficiency and energy consumption costs: a case study for regional wastewater treatment plant in Malaysia. J. Water Reuse Desalin. 7(1), 103–110 (2017). https://doi.org/10.2166/wrd.2016.196

    Article  Google Scholar 

  12. Chan, A.: Use of Microalgae in Wastewater Treatment to Remove Contaminants and Purify Biogas (2011)

    Google Scholar 

  13. Anjum, M.N., Rasheed, H.U., Ahmed, W.: Impact of waste water treatment on quality of influent & effluent water. Imp. J. Interdiscip. Res. 2(11), 844–849 (2016) [Online]. Available: https://www.researchgate.net/publication/309203753_Impact_of_Waste_Water_Treatment_on_Quality_of_Influent_Effluent_Water

  14. Mohsenpour, S.F., Hennige, S., Willoughby, N., Adeloye, A., Gutierrez, T.: Integrating micro-algae into wastewater treatment: a review. Sci. Total Environ. 752(September 2020), 142168 (2021). https://doi.org/10.1016/j.scitotenv.2020.142168

  15. Mubashar, M., et al.: Experimental investigation of Chlorella vulgaris and enterobacter sp. Mn17 for decolorization and removal of heavy metals from textile wastewater. Water (Switzerland) 12(11) (2020). https://doi.org/10.3390/w12113034

  16. Nguyen, T.D.P., Tran, T.N.T., Le, T.V.A., Nguyen Phan, T.X., Show, P.L., Chia, S.R.: Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal. J. Biosci. Bioeng. 127(4), 492–498 (2019). https://doi.org/10.1016/j.jbiosc.2018.09.004

  17. Kun, L., et al.: Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour. Technol. 291(July), 121934 (2019). https://doi.org/10.1016/j.biortech.2019.121934

  18. Nur, M.M.A., Buma, A.G.J.: Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds. Waste Biomass Valorization 10(8), 2079–2097 (2019). https://doi.org/10.1007/s12649-018-0256-3

    Article  Google Scholar 

  19. Bilad, M.R., Discart, V., Vandamme, D., Foubert, I., Muylaert, K., Vankelecom, I.F.J.: Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). Bioresour. Technol. 155, 410–417 (2014). https://doi.org/10.1016/j.biortech.2013.05.026

    Article  Google Scholar 

  20. Moreno Osorio, J.H., Pinto, G., Pollio, A., Frunzo, L., Lens, P.N.L., Esposito, G.: Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. Bioresour. Bioprocess. 6(1), 1–16 (2019). https://doi.org/10.1186/s40643-019-0259-3

  21. Szwarc, K., Szwarc, D., Zieliński, M.: Removal of biogenic compounds from the post-fermentation effluent in a culture of Chlorella vulgaris. Environ. Sci. Pollut. Res. 27(1), 111–117 (2020). https://doi.org/10.1007/s11356-019-05162-6

    Article  Google Scholar 

  22. Cai, T., Park, S.Y., Li, Y.: Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sustain. Energy Rev. 19, 360–369 (2013). https://doi.org/10.1016/j.rser.2012.11.030

    Article  Google Scholar 

  23. Mayhead, E., Silkina, A., Llewellyn, C.A., Fuentes-Grünewald, C.: Comparing nutrient removal from membrane filtered and unfiltered domestic wastewater using Chlorella vulgaris. Biology (Basel). 7(1) (2018). https://doi.org/10.3390/biology7010012

  24. Ting, H., Haifeng, L., Shanshan, M., Zhang, Y., Zhidan, L., Na, D.: Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int. J. Agric. Biol. Eng. 10(1), 1–29 (2017). https://doi.org/10.3965/j.ijabe.20171001.2705

    Article  Google Scholar 

  25. Abdulsada, Z.K.: Evaluation of microalgae for secondary and tertiary wastewater treatment. Dep. Civ. Environ. Eng., 114 (2014)

    Google Scholar 

  26. Lee, S.A., Lee, N., Oh, H.M., Ahn, C.Y.: Enhanced and balanced microalgal wastewater treatment (COD, N, and P) by interval inoculation of activated sludge. J. Microbiol. Biotechnol. 29(9), 1434–1443 (2019). https://doi.org/10.4014/jmb.1905.05034

    Article  Google Scholar 

  27. Ayatollahi, S.Z., Esmaeilzadeh, F., Mowla, D.: Integrated CO2 capture, nutrients removal and biodiesel production using Chlorella vulgaris. J. Environ. Chem. Eng. 9(2), 104763 (2021). https://doi.org/10.1016/j.jece.2020.104763

    Article  Google Scholar 

  28. Gupta, S., Pawar, S.B., Pandey, R.A.: Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Sci. Total Environ. 687, 1107–1126 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.115

    Article  Google Scholar 

  29. Marin, R., Expr, A.M.B., Marin, A.R., López, Y.C., Fuentes, P.C.: Biohydrogen production by Chlorella vulgaris and Scenedesmus obliquus immobilized cultivated in artificial wastewater under different light quality. AMB Express (2020). https://doi.org/10.1186/s13568-020-01129-w

    Article  Google Scholar 

  30. Yadav, G., et al.: Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel 285(April), 2021 (2020). https://doi.org/10.1016/j.fuel.2020.119093

    Article  Google Scholar 

  31. Venkata Subhash, G., Rajvanshi, M., Navish Kumar, B., Govindachary, S., Prasad, V., Dasgupta, S.: Carbon streaming in microalgae: extraction and analysis methods for high value compounds. Bioresour. Technol. 244, 1304–1316 (2017). https://doi.org/10.1016/j.biortech.2017.07.024

  32. Wahidin, S., Idris, A., Shaleh, S.R.M.: The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 129, 7–11 (2013). https://doi.org/10.1016/j.biortech.2012.11.032

    Article  Google Scholar 

  33. Jia, H., Yuan, Q.: Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environ. Sci. 2(1), 1–16 (2016). https://doi.org/10.1080/23311843.2016.1275089

    Article  Google Scholar 

  34. Singh, S.P., Singh, P.: Effect of temperature and light on the growth of algae species: a review. Renew. Sustain. Energy Rev. 50, 431–444 (2015). https://doi.org/10.1016/j.rser.2015.05.024

    Article  Google Scholar 

  35. Bifarini, M.A.S., Žitnik, M., Bulc, T.G., Klemenčič, A.K.: Treatment and re-use of raw blackwater by Chlorella vulgaris-based system. Water (Switzerland) 12(10), 1–17 (2020). https://doi.org/10.3390/w12102660

    Article  Google Scholar 

  36. Spennati, E., Casazza, A.A., Converti, A.: Winery wastewater treatment by microalgae to produce low-cost biomass for energy production purposes. Energies 13(10) (2020). https://doi.org/10.3390/en13102490

  37. Amenorfenyo, D.K., et al.: Microalgae brewery wastewater treatment: potentials, benefits and the challenges. Int. J. Environ. Res. Public Health 16(11) (2019). https://doi.org/10.3390/ijerph16111910

  38. Narasimhan, A.M.: Microalgal bioremediation of nutrients in wastewater and carbon dioxide in flue gas. Environ. Eng. 87 (2010) [Online]. Available: http://scholarsmine.mst.edu/thesis/pdf/Murali_Narasi%5Cnmhan_09007dcc807bb7a4.pdf

  39. Low, S.S., et al.: Microalgae cultivation in palm oil mill effluent (Pome) treatment and biofuel production. Sustain 13(6) (2021). https://doi.org/10.3390/su13063247

  40. Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14(1), 217–232 (2010). https://doi.org/10.1016/j.rser.2009.07.020

    Article  Google Scholar 

  41. Kumar, M.S., Miao, Z.H., Wyatt, S.K.: Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresour. Technol. 101(15), 6012–6018 (2010). https://doi.org/10.1016/j.biortech.2010.02.080

    Article  Google Scholar 

  42. Znad, H., Al Ketife, A.M.D., Judd, S., AlMomani, F., Vuthaluru, H.B.: Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol. Eng. 110(October), 1–7 (2018). https://doi.org/10.1016/j.ecoleng.2017.10.008

  43. Sakarika, M., Kornaros, M.: Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresour. Technol. 219, 694–701 (2016). https://doi.org/10.1016/j.biortech.2016.08.033

    Article  Google Scholar 

  44. Ge, Z., Zhang, H., Zhang, Y., Yan, C., Zhao, Y.: Purifying synthetic high-strength wastewater by microalgae Chlorella vulgaris under various light emitting diode wavelengths and intensities. J. Environ. Heal. Sci. Eng. 11(1), 1–10 (2013). https://doi.org/10.1186/2052-336X-11-8

    Article  Google Scholar 

  45. Li, H., et al.: Treatment of high-nitrate wastewater mixtures from MnO2 industry by Chlorella vulgaris. Bioresour. Technol. 291(May), 1–7 (2019). https://doi.org/10.1016/j.biortech.2019.121836

    Article  Google Scholar 

  46. Askari Hesni, M., Hedayati, S.A., Qadermarzi, A., Pouladi, M., Zangiabadi, S., Naqshbandi, N.: Comparison ability of algae and nanoparticles on nitrate and phosphate removal from aquaculture wastewater. Environ. Heal. Eng. Manag. 6(3), 171–177 (2019). https://doi.org/10.15171/ehem.2019.19

  47. Huang, Y., Huang, Y., Liao, Q., Fu, Q., Xia, A., Zhu, X.: Improving phosphorus removal efficiency and Chlorella vulgaris growth in high-phosphate MFC wastewater by frequent addition of small amounts of nitrate. Int. J. Hydrogen Energy 42(45), 27749–27758 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.069

    Article  Google Scholar 

  48. Perrine, Z., Negi, S., Sayre, R.T.: Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 1(2), 134–142 (2012). https://doi.org/10.1016/j.algal.2012.07.002

    Article  Google Scholar 

  49. Chen, C.Y., et al.: Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78, 1–10 (2013). https://doi.org/10.1016/j.bej.2013.03.006

    Article  Google Scholar 

  50. Lee, E., Jalalizadeh, M., Zhang, Q.: Growth kinetic models for microalgae cultivation: a review. Algal Res. 12, 497–512 (2015). https://doi.org/10.1016/j.algal.2015.10.004

    Article  Google Scholar 

  51. Choi, H.J.: Parametric study of brewery wastewater effluent treatment using Chlorella vulgaris microalgae. Environ. Eng. Res. 21(4), 401–408 (2016). https://doi.org/10.4491/eer.2016.024

    Article  Google Scholar 

  52. Kwon, G., Nam, J.H., Kim, D.M., Song, C., Jahng, D.: Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters. Environ. Eng. Res. 25(2), 135–146 (2020). https://doi.org/10.4491/eer.2018.442

    Article  Google Scholar 

  53. Emparan, Q., Harun, R., Kodiappan, J.A.: Effect of microalgae-to-palm oil mill effluent (POME) ratio for rapid effective pollutants removal and biomass production. Desalin. Water Treat. 198(September), 119–125 (2020). https://doi.org/10.5004/dwt.2020.25979

    Article  Google Scholar 

  54. Khan, M.I., Shin, J.H., Kim, J.D.: The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17(1), 1–21 (2018). https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  55. Chevalier, P., Proulx, D., Lessard, P., Vincent, W.F., De La Noüe, J.: Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 12(2), 105–112 (2000). https://doi.org/10.1023/A:1008168128654

    Article  Google Scholar 

  56. Subashini, P.S., Rajiv, P.: An investigation of textile wastewater treatment using Chlorella vulgaris. Orient. J. Chem. 34(5), 2517–2524 (2018). https://doi.org/10.13005/ojc/340538

    Article  Google Scholar 

  57. Cheah, W.Y., Show, P.L., Juan, J.C., Chang, J.S., Ling, T.C.: Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Convers. Manag. 174(June), 430–438 (2018). https://doi.org/10.1016/j.enconman.2018.08.057

    Article  Google Scholar 

  58. Khoo, C.G., Woo, M.H., Yury, N., Lam, M.K., Lee, K.T.: Dual role of Chlorella vulgaris in wastewater treatment for biodiesel production: growth optimization and nutrients removal study. J. Japan Inst. Energy 96(8), 290–299 (2017). https://doi.org/10.3775/jie.96.290

  59. AlMomani, F.A., Örmeci, B.: Performance of Chlorella Vulgaris, Neochloris oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol. Eng. 95, 280–289 (2016). https://doi.org/10.1016/j.ecoleng.2016.06.038

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the MyRA Research Grant UiTM (600-RMC/GPM ST 5/3(024/2021)) and Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Malaysia, for financial support in this research. This research also was supported in part with Kurita Research Grant (22Pmy241-U2) provided by Kurita Water and Environment Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuraisah Dollah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dollah, Z., Azuan, N.S.M., Basri, M.H.H., Alias, S., Akbar, N.A. (2024). Literature Analysis on Pollutant Removal Using Microalgae (Chlorella vulgaris) in Different Wastewater Treatment. In: Sabtu, N. (eds) Proceedings of AWAM International Conference on Civil Engineering 2022—Volume 1. AICCE 2022. Lecture Notes in Civil Engineering, vol 384. Springer, Singapore. https://doi.org/10.1007/978-981-99-6022-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6022-4_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6021-7

  • Online ISBN: 978-981-99-6022-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics