Skip to main content

Mechanical Properties of Aluminium Metal Matrix Composites: Advancements, Opportunities and Perspective

  • Chapter
  • First Online:
Structural Composite Materials

Abstract

Metal Matrix Composites (MMCs) have rapidly gained prominence for prospective deployments in the aerospace and automotive sectors owing to its greater strength-to-weight ratio and greater temperature tolerance. MMCs are formed by incorporating a reinforcing element into a metal matrix. Due to its exceptional strength, stiffness, wear resistance, thermal stability, and a variety of other characteristics that vary depending on the type and quantity of reinforcements used, aluminium-based metal matrix composites are considered as one of the best engineering structural elements. The chapter examines the mechanical properties of Aluminium Metal Matrix Composites as well as the progress accomplished in this area. Opportunities and perspectives are also provided in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nappi C (2013) The global aluminium industry 40 years from 1972. In: World aluminium, pp 1–27

    Google Scholar 

  2. Nturanabo F, Masu L, Kirabira JB (2019) Novel applications of aluminium metal matrix composites. In: Aluminium alloys and composites

    Google Scholar 

  3. Macke A, Schultz BF, Rohatgi PK, Gupta N (2013) Metal matrix composites for automotive applications. In: Advanced composite materials for automotive applications: structural integrity and crashworthiness, 24, pp 311–344

    Google Scholar 

  4. Kurumlu D, Payton EJ, Young ML, Schöbel M, Requena G, Eggeler G (2012) High-temperature strength and damage evolution in short fiber reinforced aluminum alloys studied by miniature creep testing and synchrotron microtomography. Acta Mater 60(1):67–78

    Article  CAS  Google Scholar 

  5. McDanels DL (1985) Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement. Metall Trans A 16(6):1105–1115

    Article  Google Scholar 

  6. Ralph B, Yuen HC, Lee WB (1997) The processing of metal matrix composites—an overview. J Mater Process Technol 63(1–3):339–353

    Article  Google Scholar 

  7. Rajan TPD, Pillai RM, Pai BC (1998) Reinforcement coatings and interfaces in aluminium metal matrix composites. J Mater Sci 33(14):3491–3503

    Article  CAS  Google Scholar 

  8. Murty SN, Rao BN, Kashyap BP (2003) On the hot working characteristics of 6061Al–SiC and 6061–Al2O3 particulate reinforced metal matrix composites. Compos Sci Technol 63(1):119–135

    Article  Google Scholar 

  9. Previtali B, Pocci D, Taccardo C (2008) Application of traditional investment casting process to aluminium matrix composites. Compos A Appl Sci Manuf 39(10):1606–1617

    Article  Google Scholar 

  10. Das S, Das S, Das K (2007) RETRACTED: abrasive wear of zircon sand and alumina reinforced Al–4.5 wt% Cu alloy matrix composites–a comparative study

    Google Scholar 

  11. Ramnath BV, Elanchezhian C, Annamalai RM, Aravind S, Atreya TSA, Vignesh V, Subramanian C (2014) Aluminium metal matrix composites–a review. Rev Adv Mater Sci 38(5):55–60

    CAS  Google Scholar 

  12. Xie MS, Wang Z, Zhang GQ, Yang C, Zhang WW, Prashanth KG (2020) Microstructure and mechanical property of bimodal-size metallic glass particle-reinforced Al alloy matrix composites. J Alloy Compd 814:152317

    Article  CAS  Google Scholar 

  13. Panwar N, Chauhan A (2018) Fabrication methods of particulate reinforced Aluminium metal matrix composite-a review. Mater Today: Proc 5(2):5933–5939

    CAS  Google Scholar 

  14. Sharma R, Jha SP, Kakkar K, Kamboj K, Sharma PA (2017) A review of the aluminium metal matrix composite and its properties. Int Res J Eng Technol 4(2):832–842

    Google Scholar 

  15. Sharma P, Khanduja D, Sharma S (2014) Tribological and mechanical behavior of particulate aluminum matrix composites. J Reinf Plast Compos 33(23):2192–2202

    Article  Google Scholar 

  16. Rahman MH, Al Rashed HM (2014) Characterization of silicon carbide reinforced aluminum matrix composites. Proc Eng 90:103–109

    Article  CAS  Google Scholar 

  17. Vinitha BS (2014) Motgi, evaluation of mechanical properties of Al 7075 alloy, flyash, SiC and red mud reinforced metal matrix composites. Inter J Sci Res Develop 2:190–193

    CAS  Google Scholar 

  18. Chen R, Iwabuchi A, Shimizu T, Shin HS, Mifune H (1997) The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminium alloy matrix composites. Wear 213(1–2):175–184

    Article  CAS  Google Scholar 

  19. Martin A, Martinez MA, Llorca J (1996) Wear of SiC-reinforced Al-matrix composites in the temperature range 20–200 ℃. Wear 193(2):169–179

    Article  CAS  Google Scholar 

  20. Sekine H, Chent R (1995) A combined microstructure strengthening analysis of SiCp/Al metal matrix composites. Composites 26(3):183–188

    Article  CAS  Google Scholar 

  21. Chen R, Zhang G (1993) Casting defects and properties of cast A356 aluminium alloy reinforced with SiC particles. Compos Sci Technol 47(1):51–56

    Article  CAS  Google Scholar 

  22. Singh PM, Lewandowski JJ (1993) Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy. Metall and Mater Trans A 24(11):2531–2543

    Article  Google Scholar 

  23. Raturi A, Mer KKS, Pant PK (2017) Synthesis and characterization of mechanical, tribological and micro structural behaviour of Al 7075 matrix reinforced with nano Al2O3 particles. Mater Today: Proc 4(2):2645–2658

    Google Scholar 

  24. Ma ZY, Tjong SC (1997) In situ ceramic particle-reinforced aluminum matrix composites fabricated by reaction pressing in the TiO2 (Ti)-Al-B (B2O3) systems. Metall and Mater Trans A 28(9):1931–1942

    Article  Google Scholar 

  25. Sulaiman S, Marjom Z, Ismail MIS, Ariffin MKA, Ashrafi N (2017) Effect of modifier on mechanical properties of aluminium silicon carbide (Al-SiC) composites. Proc Eng 184:773–777

    Article  CAS  Google Scholar 

  26. Llorca J (1993) Failure micromechanisms in particulate-reinforced metal-matrix composites. Le Journal de Physique IV 3(C7):C7-1793

    Google Scholar 

  27. Sawla S, Das S (2004) Combined effect of reinforcement and heat treatment on the two body abrasive wear of aluminum alloy and aluminum particle composites. Wear 257(5–6):555–561

    Article  CAS  Google Scholar 

  28. Thakur SK, Dhindaw BK (2001) The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness. Wear 247(2):191–201

    Article  CAS  Google Scholar 

  29. Ghanaraja S, Kumar KV, Ravikumar KS, Madhusudan BM (2017) Mechanical properties of Al2O3 reinforced cast and hot extruded Al based metal matrix composites. Mater Today: Proc 4(2):2771–2776

    Google Scholar 

  30. Hashim J, Looney L, Hashmi MSJ (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92:1–7

    Article  Google Scholar 

  31. Dwivedi SP, Sharma S, Mishra RK (2014) RETRACTED: microstructure and mechanical properties of A356/SiC composites fabricated by electromagnetic stir casting

    Google Scholar 

  32. Khademian M, Alizadeh A, Abdollahi A (2017) Fabrication and characterization of hot rolled and hot extruded boron carbide (B4C) reinforced A356 aluminum alloy matrix composites produced by stir casting method. Trans Indian Inst Met 70(6):1635–1646

    Article  CAS  Google Scholar 

  33. Kumar SM, Pramod R, Govindaraju HK (2017) Evaluation of mechanical and wear properties of aluminium AA430 reinforced with SiC and Mgo. Mater Today: Proc 4(2):509–518

    Google Scholar 

  34. Saravanakumar A, Sasikumar P, Sivasankaran S (2014) Synthesis and mechanical behavior of AA 6063–x wt% Al2O3-1% Gr (x = 3, 6, 9 and 12 wt%) hybrid composites. Proc Eng 97:951–960

    Article  CAS  Google Scholar 

  35. Mohanavel V, Rajan K, Senthil PV, Arul S (2017) Mechanical behaviour of hybrid composite (AA6351+ Al2O3+ Gr) fabricated by stir casting method. Mater Today: Proc 4(2):3093–3101

    Google Scholar 

  36. Ravikumar K, Kiran K, Sreebalaji VS (2017) Characterization of mechanical properties of aluminium/tungsten carbide composites. Measurement 102:142–149

    Article  Google Scholar 

  37. Sharma P, Sharma S, Khanduja D (2015) Production and some properties of Si3N4 reinforced aluminium alloy composites. J Asian Ceramic Soc 3(3):352–359

    Article  Google Scholar 

  38. Madhusudhan M, Naveen GJ, Mahesha K (2017) Mechanical characterization of AA7068-ZrO2 reinforced metal matrix composites. Mater Today: Proc 4(2):3122–3130

    Google Scholar 

  39. Radhika N, Raghu R (2016) Development of functionally graded aluminium composites using centrifugal casting and influence of reinforcements on mechanical and wear properties. Trans Nonferr Metals Soc China 26(4):905–916

    Article  CAS  Google Scholar 

  40. Prasad DS, Shoba C (2016) Experimental evaluation onto the damping behavior of Al/SiC/RHA hybrid composites. J Market Res 5(2):123–130

    Google Scholar 

  41. Alaneme KK, Bodunrin MO, Awe AA (2018) Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. J King Saud Univ Eng Sci 30(1):96–103

    Google Scholar 

  42. Kumar KR, Kiran K, Sreebalaji VS (2017) Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J Alloy Compd 723:795–801

    Article  Google Scholar 

  43. Kannan C, Ramanujam R (2017) Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. J Adv Res 8(4):309–319

    Article  CAS  Google Scholar 

  44. Kannan C, Ramanujam R, Balan ASS (2018) Machinability studies on Al 7075/BN/Al2O3 squeeze cast hybrid nanocomposite under different machining environments. Mater Manuf Processes 33(5):587–595

    Article  CAS  Google Scholar 

  45. Narayan S, Rajeshkannan A (2017) Hardness, tensile and impact behaviour of hot forged aluminium metal matrix composites. J Market Res 6(3):213–219

    CAS  Google Scholar 

  46. Veeravalli RR, Nallu R, Mohiuddin SMM (2016) Mechanical and tribological properties of AA7075–TiC metal matrix composites under heat treated (T6) and cast conditions. J Market Res 5(4):377–383

    CAS  Google Scholar 

  47. Ramnath BV, Elanchezhian C, Jaivignesh M, Rajesh S, Parswajinan C, Ghias ASA (2014) Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Mater Des 58:332–338

    Article  Google Scholar 

  48. Hasson DF, Hoover SM, Crowe CR (1985) Effect of thermal treatment on the mechanical and toughness properties of extruded SiCw/aluminium 6061 metal matrix composite. J Mater Sci 20(11):4147–4154

    Article  CAS  Google Scholar 

  49. Friend CM (1989) Toughness in metal matrix composites. Mater Sci Technol 5(1):1–7

    Article  CAS  Google Scholar 

  50. McDanels DL, Signorelli RA (1976) Effect of fiber diameter and matrix alloys on impact-resistant boron/aluminum composites (No. E-8648)

    Google Scholar 

  51. Nardone VC, Strife JR, Prewo KM (1991) Microstructurally toughened particulate-reinforced aluminum matrix composites. Metall Trans A 22(1):171–182

    Article  Google Scholar 

  52. Unsworth JP, Bandyopadhyay S (1994) Effect of thermal ageing on hardness, tensile and impact properties of an alumina microsphere-reinforced aluminium metal-matrix composite. J Mater Sci 29(17):4645–4650

    Article  CAS  Google Scholar 

  53. Bonollo F, Ceschini L, Garagnani GL (1997) Mechanical and impact behaviour of (Al2O3) p/2014 and (Al2O3) p/6061 Al metal matrix composites in the 25–200 ℃ range. Appl Compos Mater 4(3):173–185

    Article  CAS  Google Scholar 

  54. Surappa MK, Sivakumar P (1993) Fracture toughness evaluation of 2040-Al/Al2O3 particulate composites by instrumented impact. Compos Sci Technol 46(3):287–292

    Article  CAS  Google Scholar 

  55. Ozden S, Ekici R, Nair F (2007) Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Compos A Appl Sci Manuf 38(2):484–494

    Article  Google Scholar 

  56. Kulkarni SG, Meghnani JV, Lal A (2014) Effect of fly ash hybrid reinforcement on mechanical property and density of aluminium 356 alloy. Procedia Mater Sci 5:746–754

    Article  CAS  Google Scholar 

  57. Kurtyka P, Rylko N, Tokarski T, Wójcicka A, Pietras A (2015) Cast aluminium matrix composites modified with using FSP process–changing of the structure and mechanical properties. Compos Struct 133:959–967

    Article  Google Scholar 

  58. Bhushan B (2013) Introduction to tribology. John Wiley & Sons

    Book  Google Scholar 

  59. Davim JP (2013) Wear of advanced materials. John Wiley & Sons

    Book  Google Scholar 

  60. Almen JO (1943) Shot blasting to increase fatigue resistance. SAE Trans:248–268

    Google Scholar 

  61. Davim JP (Ed) (2012) Statistical and computational techniques in manufacturing. Springer Science & Business Media

    Google Scholar 

  62. Yang LJ (2003) Wear coefficient equation for aluminium-based matrix composites against steel disc. Wear 255(1–6):579–592

    Article  CAS  Google Scholar 

  63. Riahi AR, Alpas AT (2001) The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear 251(1–12):1396–1407

    Google Scholar 

  64. Yu SY, Ishii H, Tohgo K, Cho YT, Diao D (1997) Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite. Wear 213(1–2):21–28

    Article  CAS  Google Scholar 

  65. Wilson S, Alpas AT (1997) Wear mechanism maps for metal matrix composites. Wear 212(1):41–49

    Article  CAS  Google Scholar 

  66. How HC, Baker TN (1997) Dry sliding wear behaviour of Saffil-reinforced AA6061 composites. Wear 210(1–2):263–272

    Article  CAS  Google Scholar 

  67. Wilson S, Alpas AT (1996) Effect of temperature on the sliding wear performance of Al alloys and Al matrix composites. Wear 196(1–2):270–278

    Article  CAS  Google Scholar 

  68. Gurcan AB, Baker TN (1995) Wear behaviour of AA6061 aluminium alloy and its composites. Wear 188(1–2):185–191

    Article  CAS  Google Scholar 

  69. Garcia-Cordovilla C, Narciso J, Louis E (1996) Abrasive wear resistance of aluminium alloy/ceramic particulate composites. Wear 192(1–2):170–177

    Article  CAS  Google Scholar 

  70. Sharma SC (2001) The sliding wear behavior of Al6061–garnet particulate composites. Wear 249(12):1036–1045

    Article  CAS  Google Scholar 

  71. Hutchings IM (1987) Wear by particulates. Chem Eng Sci 42(4):869–878

    Article  CAS  Google Scholar 

  72. Naplocha K, Granat K (2008) Dry sliding wear of Al/Saffil/C hybrid metal matrix composites. Wear 265(11–12):1734–1740

    Article  CAS  Google Scholar 

  73. Shafiei-Zarghani A, Kashani-Bozorg SF, Zarei-Hanzaki A (2009) Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng, A 500(1–2):84–91

    Article  Google Scholar 

  74. Ghasemi-Kahrizsangi A, Kashani-Bozorg SF (2012) Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing. Surf Coat Technol 209:15–22

    Article  CAS  Google Scholar 

  75. Yang LJ (2003) The transient and steady wear coefficients of A6061 aluminium alloy reinforced with alumina particles. Compos Sci Technol 63(3–4):575–583

    Article  CAS  Google Scholar 

  76. Al-Qutub AM, Allam IM, Qureshi TW (2006) Effect of sub-micron Al2O3 concentration on dry wear properties of 6061 aluminum based composite. J Mater Process Technol 172(3):327–331

    Article  CAS  Google Scholar 

  77. Al-Qutub AM, Allam IM, Samad A (2008) Wear and friction of Al–Al2O3 composites at various sliding speeds. J Mater Sci 43(17):5797–5803

    Article  CAS  Google Scholar 

  78. İzciler MAHMUT, Muratoglu M (2003) Wear behaviour of SiC reinforced 2124 Al alloy composite in RWAT system. J Mater Process Technol 132(1–3):67–72

    Article  Google Scholar 

  79. Sahin Y (2003) Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis. Mater Des 24(2):95–103

    Article  CAS  Google Scholar 

  80. De Salazar JG, Barrena MI (2004) Influence of heat treatments on the wear behaviour of an AA6092/SiC25p composite. Wear 256(3–4):286–293

    Article  Google Scholar 

  81. Muratoğlu M, Aksoy M (2006) Abrasive wear of 2124Al–SiC composites in the temperature range 20–200 C. J Mater Process Technol 174(1–3):272–276

    Article  Google Scholar 

  82. Ghosh SK, Saha P (2011) Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process. Mater Des 32(1):139–145

    Article  CAS  Google Scholar 

  83. Singh M, Prasad BK, Mondal DP, Jha AK (2001) Dry sliding wear behaviour of an aluminium alloy–granite particle composite. Tribol Int 34(8):557–567

    Article  CAS  Google Scholar 

  84. Hemanth J (2002) Wear behavior of chilled (metallic and non-metallic) aluminum alloy–glass particulate composite. Mater Des 23(5):479–487

    Article  CAS  Google Scholar 

  85. Tang F, Wu X, Ge S, Ye J, Zhu H, Hagiwara M, Schoenung JM (2008) Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites. Wear 264(7–8):555–561

    Google Scholar 

  86. Shorowordi KM, Haseeb ASMA, Celis JP (2004) Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad. Wear 256(11–12):1176–1181

    Article  CAS  Google Scholar 

  87. Wang Y, Rainforth WM, Jones H, Lieblich M (2001) Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy–Ni3Al powder metallurgy composite. Wear 251(1–12):1421–1432

    Article  Google Scholar 

  88. Jiménez AE, Bermúdez MD, Cintas J, Herrera EJ (2009) Dry wear of NiAl3-reinforced mechanically alloyed aluminium with different microstructure. Wear 266(1–2):255–265

    Article  Google Scholar 

  89. Melgarejo ZH, Suárez OM, Sridharan K (2006) Wear resistance of a functionally-graded aluminum matrix composite. Scripta Mater 55(1):95–98

    Article  CAS  Google Scholar 

  90. Zhou SM, Zhang XB, Ding ZP, Min CY, Xu GL, Zhu WM (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos A Appl Sci Manuf 38(2):301–306

    Article  Google Scholar 

  91. Kim IY, Lee JH, Lee GS, Baik SH, Kim YJ, Lee YZ (2009) Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267(1–4):593–598

    Article  CAS  Google Scholar 

  92. Choi HJ, Lee SM, Bae DH (2010) Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes. Wear 270(1–2):12–18

    Article  CAS  Google Scholar 

  93. Rohatgi PK, Tabandeh-Khorshid M, Omrani E, Lovell MR, Menezes PL (2013) Tribology of metal matrix composites. In: Tribology for scientists and engineers. Springer, New York, NY, pp 233–268

    Google Scholar 

  94. Kumar GV, Rao CSP, Selvaraj N (2012) Studies on mechanical and dry sliding wear of Al6061–SiC composites. Compos B Eng 43(3):1185–1191

    Article  Google Scholar 

  95. Sahin Y, Acılar M (2003) Production and properties of SiCp-reinforced aluminium alloy composites. Compos A Appl Sci Manuf 34(8):709–718

    Article  Google Scholar 

  96. Bindumadhavan PN, Wah HK, Prabhakar O (2001) Dual particle size (DPS) composites: effect on wear and mechanical properties of particulate metal matrix composites. Wear 248(1–2):112–120

    Article  CAS  Google Scholar 

  97. Mistry JM, Gohil PP (2017) An overview of diversified reinforcement on aluminum metal matrix composites: tribological aspects. Proc Inst Mech Eng Part J: J Eng Tribol 231(3):399–421

    Article  CAS  Google Scholar 

  98. Rao RN, Das S (2010) Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites. Mater Des 31(3):1200–1207

    Article  CAS  Google Scholar 

  99. Hassan AM, Alrashdan A, Hayajneh MT, Mayyas AT (2009) Wear behavior of Al–Mg–Cu–based composites containing SiC particles. Tribol Int 42(8):1230–1238

    Article  CAS  Google Scholar 

  100. Kumar S, Balasubramanian V (2008) Developing a mathematical model to evaluate wear rate of AA7075/SiCp powder metallurgy composites. Wear 264(11–12):1026–1034

    Article  CAS  Google Scholar 

  101. Diler EA, Ipek R (2013) Main and interaction effects of matrix particle size, reinforcement particle size and volume fraction on wear characteristics of Al–SiCp composites using central composite design. Compos B Eng 50:371–380

    Article  CAS  Google Scholar 

  102. Dvivedi A, Rajeev VR, Kumar P, Singh I (2012) Tribological characteristics of Al 6063–SiCp metal–matrix composite under reciprocating and wet conditions. Proc Inst Mech Eng Part J: J Eng Tribol 226(2):138–149

    Article  CAS  Google Scholar 

  103. Aksöz S, Bican O, Çalın R, Bostan B (2014) Effect of T7 heat treatment on the dry sliding friction and wear properties of the SiC-reinforced AA 2014 aluminium matrix composites produced by vacuum infiltration. Proc Inst Mech Eng Part J: J Eng Tribol 228(3):312–319

    Article  Google Scholar 

  104. Vieira AC, Sequeira PD, Gomes JR, Rocha LA (2009) Dry sliding wear of Al alloy/SiCp functionally graded composites: influence of processing conditions. Wear 267(1–4):585–592

    Article  CAS  Google Scholar 

  105. Duque NB, Melgarejo ZH, Suhrez OM (2005) Functionally graded aluminum matrix composites produced by centrifugal casting. Mater Charact 55(2):167–171

    Google Scholar 

  106. Rajan TPD, Pai BC (2009) Formation of solidification microstructures in centrifugal cast functionally graded aluminium composites. Trans Indian Inst Met 62(4):383–389

    Article  CAS  Google Scholar 

  107. Karun AS, Rajan TPD, Pillai UTS, Pai BC, Rajeev VR, Farook A (2016) Enhancement in tribological behaviour of functionally graded SiC reinforced aluminium composites by centrifugal casting. J Compos Mater 50(16):2255–2269

    Article  CAS  Google Scholar 

  108. Yang W, Wang AY, Ke PL, Jiang BL (2011) Characterizations of dlc/mao composite coatings on az80 magnesium alloy. Acta Metall Sin 47(12):1535–1540

    CAS  Google Scholar 

  109. Natarajan N, Vijayarangan S, Rajendran I (2006) Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material. Wear 261(7–8):812–822

    Article  CAS  Google Scholar 

  110. Kumar GH, Bapu BR, Sagar R, Mohit H (2010) The abrasive wear behaviour of Al-SiC p composites for automotive parts. In: Frontiers in automobile and mechanical engineering. IEEE, pp 54–59

    Google Scholar 

  111. Valiei M (2020) Improving tribological and mechanical properties of copper-based friction materials for brake pad applications

    Google Scholar 

  112. Sannino AP, Rack HJ (1995) Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion. Wear 189(1–2):1–19

    Article  CAS  Google Scholar 

  113. Make A, Schultz BF, Rohatgi P (2012) Metal matrix composites. Adv Mater Processes 170(3):19–23

    Google Scholar 

  114. Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des 1980–2015(56):862–871

    Article  Google Scholar 

  115. Rohatgi P (1991) Cast aluminum-matrix composites for automotive applications. Jom 43(4):10–15

    Article  CAS  Google Scholar 

  116. Rambabu PPNKV, Eswara Prasad N, Kutumbarao VV, Wanhill RJH (2017) Aluminium alloys for aerospace applications. In: Aerospace materials and material technologies, pp 29–52

    Google Scholar 

  117. Samal P, Vundavilli PR, Meher A, Mahapatra MM (2020) Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J Manuf Process 59:131–152

    Article  Google Scholar 

  118. Bajakke PA, Malik VR, Deshpande AS (2019) Particulate metal matrix composites and their fabrication via friction stir processing–a review. Mater Manuf Processes 34(8):833–881

    Article  CAS  Google Scholar 

  119. Ma ZY (2008) Friction stir processing technology: a review. Metall and Mater Trans A 39(3):642–658

    Article  Google Scholar 

  120. Zhang X, Liang S, Li H, Yang J (2017) Mechanical and optical properties of transparent alumina obtained by rapid vacuum sintering. Ceram Int 43(1):420–426

    Article  CAS  Google Scholar 

  121. Ashwath P, Xavior MA (2018) Effect of ceramic reinforcements on microwave sintered metal matrix composites. Mater Manuf Processes 33(1):7–12

    Article  CAS  Google Scholar 

  122. Tao P, Wang Y (2019) Improved thermal conductivity of silicon carbide fibers-reinforced silicon carbide matrix composites by chemical vapor infiltration method. Ceram Int 45(2):2207–2212

    Article  CAS  Google Scholar 

  123. Soltani S, Azari Khosroshahi R, Taherzadeh Mousavian R, Jiang ZY, Fadavi Boostani A, Brabazon D (2017) Stir casting process for manufacture of Al–SiC composites. Rare Met 36(7):581–590

    Article  CAS  Google Scholar 

  124. Zhao M, Wu G, Jiang L, Dou Z (2006) Friction and wear properties of TiB2P/Al composite. Compos A Appl Sci Manuf 37(11):1916–1921

    Article  Google Scholar 

  125. Kalkanlı A, Yılmaz S (2008) Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates. Mater Des 29(4):775–780

    Article  Google Scholar 

  126. Thangarasu A, Murugan N, Dinaharan I, Vijay SJ (2015) Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing. Arch Civ Mech Eng 15(2):324–334

    Article  Google Scholar 

  127. Kumar GSP, Koppad PG, Keshavamurthy R, Alipour M (2017) Microstructure and mechanical behaviour of in situ fabricated AA6061-TiC metal matrix composites. Arch Civ Mech Eng 17(3):535–544

    Article  Google Scholar 

  128. Kumar N, Gautam RK, Mohan S (2015) In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites. Mater Des 80:129–136

    Article  CAS  Google Scholar 

  129. Sajjadi SA, Ezatpour HR, Parizi MT (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Des 34:106–111

    Article  CAS  Google Scholar 

  130. Valibeygloo N, Azari Khosroshahi R, Taherzadeh Mousavian R (2013) Microstructural and mechanical properties of Al-4.5 wt% Cu reinforced with alumina nanoparticles by stir casting method. Int J Min Metall Mater 20(10):978–985

    Google Scholar 

  131. Zhang P, Zhang W, Du Y, Wang Y (2020) High-performance Al-1.5 wt% Si-Al2O3 composite by vortex-free high-speed stir casting. J Manuf Process 56:1126–1135

    Article  Google Scholar 

  132. Zhang HB, Wang B, Zhang YT, Li Y, He JL, Zhang YF (2020) Influence of aging treatment on the microstructure and mechanical properties of CNTs/7075 Al composites. J Alloy Compd 814:152357

    Article  CAS  Google Scholar 

  133. Wazeer A, Mondal V, Kennedy S (2021) Comparative studies on microstructure and hardness of plasma-sprayed Al2 TiO5, ZrO2 and Cr2O3 ceramic coatings on Al–Silicon (LM13). In: Recent advances in mechanical engineering 2021. Springer, Singapore, pp 907–916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Wazeer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wazeer, A., Mukherjee, A., Das, A., Sengupta, B., Mandal, G., Sinha, A. (2024). Mechanical Properties of Aluminium Metal Matrix Composites: Advancements, Opportunities and Perspective. In: Boppana, S.B., Ramachandra, C.G., Kumar, K.P., Ramesh, S. (eds) Structural Composite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-5982-2_9

Download citation

Publish with us

Policies and ethics