Skip to main content

A Lightweight Sensor Fusion for Neural Visual Inertial Odometry

  • Conference paper
  • First Online:
International Conference on Neural Computing for Advanced Applications (NCAA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1870))

Included in the following conference series:

  • 413 Accesses

Abstract

In recent years, the performance of visual inertial odometry (VIO) based on deep learning has shown significant advantages over traditional geometric methods. However, all existing methods estimate each pose through visual and inertial measurements, which involves a large amount of computational redundancy, resulting in huge time costs and hardware damage when training and deploying on devices. In order to maintain accuracy while reducing the number of training parameters, an improved algorithm based on Visual-Selective-VIO is proposed. To reduce the number of network parameters and maintain the training accuracy, a unique attention mechanism is designed for the visual branch and a lightweight pose estimation module. By improving the visual branch, we serialize the information of attention feature maps, covering both channel and spatial dimensions. Then, we multiply these two feature maps with the original input feature maps for adaptive feature correction. This method improves the sensitivity of the model to channel features and enables more accurate image localization. Experimental results show that our algorithm maintains accuracy with a 10\(\%\) reduction in network parameters compared to advanced VIO algorithm, making it more suitable for training large-scale datasets and deployment in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fetsch, C.R., Turner, A.H., DeAngelis, G.C., Angelaki, D.E.: Dynamic reweighting of visual and vestibular cues during self-motion perception. J. Neurosci. 29(49), 15601–15612 (2009)

    Article  Google Scholar 

  2. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: Onmanifold preintegration for real-time visual Cinertial odometry. IEEE Trans. Rob. 33(1), 1–21 (2017)

    Article  Google Scholar 

  3. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visual Cinertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015)

    Article  Google Scholar 

  4. Li, M., Mourikis, A.I.: High-precision, consistent EKF based visual-inertial odometry. Int. J. Robot. Res. 32(6), 690–711 (2013)

    Article  Google Scholar 

  5. Qin, T., Li, P., Shen, S.: VINS-MONO: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Rob. 34(4), 1004–1020 (2018)

    Article  Google Scholar 

  6. Clark, R., Wang, S., Wen, H., Markham, A., Trigoni, N.: ViNet: visual-inertial odometry as a sequence-to-sequence learning problem. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  7. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  8. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)

    Article  Google Scholar 

  9. Mur-Artal, R., Tard®s, J.D.: Orb-slam2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Google Scholar 

  10. Chen, C., Rosa, S., Miao, Y., et al.: Selective sensor fusion for neural visual-inertial odometry. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10542–10551 (2019)

    Google Scholar 

  11. Liu, L., Li, G., Li, T.H.: AtVio: attention guided visual-inertial odometry. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4125–4129. IEEE (2021)

    Google Scholar 

  12. Shamwell, E.J., Leung, S., Nothwang, W.D.: Vision-aided absolute trajectory estimation using an unsupervised deep network with online error correction. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2524–2531. IEEE (2018)

    Google Scholar 

  13. Han, L., Lin, Y., Du, G., Lian, S.: Deepvio: self-supervised deep learning of monocular visual inertial odometry using 3D geometric constraints. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6906–6913. IEEE (2019)

    Google Scholar 

  14. Almalioglu, Yasin, et al.: SelfVIO: self-supervised deep monocular Visual CInertial Odometry and depth estimation, pp. 119–136. Neural Networks, 150 (2022)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  16. Simonyan K, Zisserman A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  18. Yang, M., Chen, Y., Kim, H.S.: Efficient deep visual and inertial odometry with adaptive visual modality selection. In: Computer Vision CECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, pp. 233–250. Proceedings, Part XXXVIII (2022)

    Google Scholar 

  19. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint Kalman filter for vision-aided inertial navigation. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3565–3572. IEEE (2007)

    Google Scholar 

  20. Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct EKF-based approach. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 298–304. IEEE (2015)

    Google Scholar 

  21. Leutenegger, S., Furgale, P., Rabaud, V., et al.: Keyframe-based visual-inertial slam using nonlinear optimization. In: Proceedings of Robotis Science and Systems (RSS) 2013 (2013)

    Google Scholar 

  22. Chen, C., et al.: Selective sensor fusion for neural visual-inertial odometry. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10542–10551 (2019)

    Google Scholar 

  23. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  24. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation. In: Robotics: Science and Systems XI (2015)

    Google Scholar 

  25. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Youth Foundations of Shandong Province under Grant Nos. ZR202102230323 and ZR2021QF130, the National Natural Science Foundation of China under Grant No. 62273163, and the Key R & D Project of Shandong Province under Grant No. 2022CXGC010503.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Menghua Zhang or Weijie Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Yin, X., Qin, F., Huang, K., Zhang, M., Huang, W. (2023). A Lightweight Sensor Fusion for Neural Visual Inertial Odometry. In: Zhang, H., et al. International Conference on Neural Computing for Advanced Applications. NCAA 2023. Communications in Computer and Information Science, vol 1870. Springer, Singapore. https://doi.org/10.1007/978-981-99-5847-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5847-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5846-7

  • Online ISBN: 978-981-99-5847-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics