Skip to main content

Conditional Diffusion Model-Based Data Augmentation for Alzheimer’s Prediction

  • Conference paper
  • First Online:
International Conference on Neural Computing for Advanced Applications (NCAA 2023)

Abstract

Brain imaging plays a crucial role in the study and diagnosis of Alzheimer’s disease. However, obtaining brain imaging data is challenging due to the uneven quality of images and the need to consider patient privacy. Consequently, the available data sets are often small, which can limit the effectiveness of analyses and the generalizability of findings. This study proposes a conditional diffusion model-based method for generating brain images of Alzheimer’s disease and mild cognitive impairment. The generated data was evaluated for its classification performance by comparing it with datasets containing different proportions of generated data and other data augmentation methods. The performance was visualized to aid the analysis of the experimental results. The analysis of the experimental results showed that the generated data can be used as a reliable data supplement, as it was shown to be beneficial for the classification of Alzheimer’s disease. The proposed method offers a promising approach to generating synthetic data for brain imaging research, particularly in neurodegenerative disease diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weidner, W.S., Barbarino, P.: P4-443: the state of the art of dementia research: new frontiers. Alzheimer’s Dement. 15, P1473–P1473 (2019)

    Article  Google Scholar 

  2. McKhann, G.M., et al.: The diagnosis of dementia due to alzheimer’s disease: Recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimer’s Dement. 7(3), 263–269 (2011)

    Article  Google Scholar 

  3. Jack, C.R., et al.: Medial temporal atrophy on MRI in normal aging and very mild alzheimer’s disease. Neurology 49(3), 786–794 (1997)

    Article  Google Scholar 

  4. Nordberg, A.: Pet imaging of amyloid in alzheimer’s disease. Lancet Neurol. 3(9), 519–527 (2004)

    Article  Google Scholar 

  5. Zeng, D., Wang, S., Shen, Y., Shi, C.: A GA-based feature selection and parameter optimization for support tucker machine. In: Procedia computer science, 8th International Conference on Advances in Information Technology, vol. 111, pp. 17–23 (2017)

    Google Scholar 

  6. Wang, S., Hu, Y., Shen, Y., Li, H.: Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int. J. Neural Syst. 28(02), 1750036 (2018)

    Article  Google Scholar 

  7. Wang, S., Chen, Z., You, S., Wang, B., Shen, Y., Lei, B.: Brain stroke lesion segmentation using consistent perception generative adversarial network. Neural Comput. Appl. 34(11), 8657–8669 (2022)

    Article  Google Scholar 

  8. Wang, S., et al.: An ensemble-based densely-connected deep learning system for assessment of skeletal maturity. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 426–437 (2022)

    Article  Google Scholar 

  9. Wang, S., Shen, Y., Zeng, D., Hu, Y.: Bone age assessment using convolutional neural networks. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 175–178 (2018)

    Google Scholar 

  10. Wang, S.-Q., Li, X., Cui, J.-L., Li, H.-X., Luk, K.D., Hu, Y.: Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging. J. Magn. Reson. Imaging 41(6), 1682–1688 (2015)

    Article  Google Scholar 

  11. Wang, S., Shen, Y., Chen, W., Xiao, T., Hu, J.: Automatic recognition of Mild cognitive impairment from MRI images using expedited convolutional neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 373–380. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_43

    Chapter  Google Scholar 

  12. Lei, B., Liang, E., Yang, M., Yang, P., Zhou, F., Tan, E.-L., Lei, Y., Liu, C.-M., Wang, T., Xiao, X., et al.: Predicting clinical scores for alzheimer’s disease based on joint and deep learning. Exp. Syst. Appl. 187, 115966 (2022)

    Article  Google Scholar 

  13. Wang, S., Wang, H., Shen, Y., Wang, X.: Automatic recognition of mild cognitive impairment and alzheimers disease using ensemble based 3d densely connected convolutional networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 517–523 (2018)

    Google Scholar 

  14. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  15. Mo, L., Wang, S.-Q.: A variational approach to nonlinear two-point boundary value problems. Nonlinear Anal. Theor. Methods Appl. 71(12), 834–838 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  17. Yang, H., Qian, P., Fan, C.: An indirect multimodal image registration and completion method guided by image synthesis. Comput. Math. Methods Med. 2020 (2020). Article ID 2684851

    Google Scholar 

  18. Kong, L., Lian, C., Huang, D., Hu, Y., Zhou, Q., et al.: Breaking the dilemma of medical image-to-image translation. Adv. Neural Inf. Process. Syst. 34, 1964–1978 (2021)

    Google Scholar 

  19. Kim, B., Han, I., Ye, J.C.: DiffuseMorph: unsupervised deformable image registration using diffusion model. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13691, pp. 347–364. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_20

  20. Song, T.-A., Chowdhury, S.R., Yang, F., Dutta, J.: Pet image super-resolution using generative adversarial networks. Neural Netw. 125, 83–91 (2020)

    Article  Google Scholar 

  21. You, S., et al.: Fine perceptive GANs for brain MR image super-resolution in wavelet domain. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3153088

  22. Ding, Y., et al.: Tostagan: an end-to-end two-stage generative adversarial network for brain tumor segmentation. Neurocomputing 462, 141–153 (2021)

    Article  Google Scholar 

  23. Wolleb, J., Sandkühler, R., Bieder, F., Valmaggia, P., Cattin, P.C.: Diffusion models for implicit image segmentation ensembles, arXiv preprint arXiv: Arxiv-2112.03145 (2021)

  24. Pinaya, W.H.L., et al.: Fast unsupervised brain anomaly detection and segmentation with diffusion models. In: MICCAI (2022)

    Google Scholar 

  25. Hu, S., Yuan, J., Wang, S.: Cross-modality synthesis from MRI to pet using adversarial u-net with different normalization. In: 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), pp. 1–5 (2019)

    Google Scholar 

  26. Hu, S., Lei, B., Wang, S., Wang, Y., Feng, Z., Shen, Y.: Bidirectional mapping generative adversarial networks for brain MR to pet synthesis. IEEE Trans. Med. Imaging 41(1), 145–157 (2021)

    Article  Google Scholar 

  27. Conte, G.M., et al.: Generative adversarial networks to synthesize missing t1 and flair MRI sequences for use in a multisequence brain tumor segmentation model. Radiology 299(2), 313–323 (2021)

    Article  Google Scholar 

  28. Yu, W., Lei, B., Ng, M.K., Cheung, A.C., Shen, Y., Wang, S.: Tensorizing GAN with high-order pooling for alzheimer’s disease assessment. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 4945–4959 (2021)

    Article  Google Scholar 

  29. Yu, W., et al.: Morphological feature visualization of alzheimer’s disease via multidirectional perception GAN. IEEE Trans. Neural Netw. Learn. Syst. 34, 4401–4415 (2022)

    Article  Google Scholar 

  30. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: MICCAI (2022)

    Google Scholar 

  31. Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., Haworth, A.: A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 65(5), 545–563 (2021)

    Article  Google Scholar 

  32. Hu, S., Yu, W., Chen, Z., Wang, S.: Medical image reconstruction using generative adversarial network for alzheimer disease assessment with class-imbalance problem. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1323–1327 (2020)

    Google Scholar 

  33. Shaul, R., David, I., Shitrit, O., Raviv, T.R.: Subsampled brain MRI reconstruction by generative adversarial neural networks. Med. Image Anal. 65, 101747 (2020)

    Article  Google Scholar 

  34. Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019)

    Article  Google Scholar 

  35. Luo, Y., et al.: Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion. Neurocomputing 452, 63–77 (2021)

    Article  Google Scholar 

  36. Akrout, M., et al.: Diffusion-based data augmentation for skin disease classification: impact across original medical datasets to fully synthetic images, arXiv preprint arXiv:2301.04802 (2023)

  37. Pinaya, W.H.L. et al. Brain imaging generation with latent diffusion models. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds.) Deep Generative Models. DGM4MICCAI 2022. LNCS, vol. 13609, pp. 117–126. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18576-2_12

  38. Peng, W., Adeli, E., Zhao, Q., Pohl, K.M.: Generating realistic 3d brain MRIS using a conditional diffusion probabilistic model, arXiv preprint arXiv: Arxiv-2212.08034 (2022)

  39. Mirza, M., Osindero, S.: Conditional generative adversarial nets, arXiv preprint arXiv: Arxiv-1411.1784 (2014)

  40. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: International Conference on Machine Learning (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundations of China under Grant 62172403, the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019, the Excellent Young Scholars of Shenzhen under Grant RCYX20200714114641211 and Shenzhen Key Basic Research Project under Grant JCYJ20200109115641762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Qiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, W., Shen, Y., Nicolls, F., Wang, SQ. (2023). Conditional Diffusion Model-Based Data Augmentation for Alzheimer’s Prediction. In: Zhang, H., et al. International Conference on Neural Computing for Advanced Applications. NCAA 2023. Communications in Computer and Information Science, vol 1869. Springer, Singapore. https://doi.org/10.1007/978-981-99-5844-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5844-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5843-6

  • Online ISBN: 978-981-99-5844-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics