Skip to main content

ESN-Based Control of Bending Pneumatic Muscle with Asymmetric and Rate-Dependent Hysteresis

  • Conference paper
  • First Online:
International Conference on Neural Computing for Advanced Applications (NCAA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1869))

Included in the following conference series:

  • 491 Accesses

Abstract

Soft bending pneumatic muscles (SBPMs) suffer from imprecise control due to the complicated nonlinearity, including the intrinsic rate-dependent and asymmetric hysteresis. In this work, we designed and fabricated a fiber-reinforced soft-bending pneumatic muscle (FSBPM) with high bending efficiency. A real-time visual feedback system was applied to recognize the bending angle of the FSBPM. To tackle the hysteresis problem of the FSBPM, we introduced an inverse hysteresis compensation method (IHCM) for the FSBPM, which combined the inverse hysteresis compensation with the feedback control strategy. The inverse hysteresis model was directly approximated by an echo state network (ESN). Both fixed frequency and variable frequency trajectory tracking experimental results show that compared with the traditional PID control, the proposed method effectively improves the tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morin, A.H.: Elastic diaphragm. U.S. patent no. 2642091

    Google Scholar 

  2. Irshaidat, M., Soufian, M., Al-Ibadi, A., Nefti-Meziani, S.: A novel elbow pneumatic muscle actuator for exoskeleton arm in post-stroke rehabilitation. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). IEEE (2019). https://doi.org/10.1109/robosoft.2019.8722813

  3. Zhou, W., Li, Y.: Modeling and analysis of soft pneumatic actuator with symmetrical chambers used for bionic robotic fish. Soft Rob. 7(2), 168–178 (2020). https://doi.org/10.1089/soro.2018.0087

    Article  Google Scholar 

  4. Al-Fahaam, H., Davis, S., Nefti-Meziani, S.: Power assistive and rehabilitation wearable robot based on pneumatic soft actuators. In: 2016 21st international conference on methods and models in automation and robotics (MMAR), pp. 472–477. IEEE (2016)

    Google Scholar 

  5. Hao, Y., et al.: Universal soft pneumatic robotic gripper with variable effective length. In: 2016 35th Chinese Control Conference (CCC), pp. 6109–6114. IEEE (2016)

    Google Scholar 

  6. Al-Fahaam, H., Davis, S., Nefti-Meziani, S.: The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (ebpams) for soft exoskeletons. Rob. Auton. Syst. 99, 63–74 (2018)

    Article  Google Scholar 

  7. Chen, W., Xiong, C., Liu, C., Li, P., Chen, Y.: Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor. Soft Rob. 6(4), 495–506 (2019)

    Article  Google Scholar 

  8. Polygerinos, P., et al.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Rob. 31(3), 778–789 (2015)

    Article  Google Scholar 

  9. Zhang, L., Bao, G., Yang, Q., Ruan, J., Qi, L.: Static model of flexible pneumatic bending joint. In: 2006 9th International Conference on Control, Automation, Robotics and Vision, pp. 1–5. IEEE (2006)

    Google Scholar 

  10. Zheng, T., Branson, D.T., Guglielmino, E., Caldwell, D.G.: A 3D dynamic model for continuum robots inspired by an octopus arm. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3652–3657. IEEE (2011)

    Google Scholar 

  11. She, Y., Chen, J., Shi, H., Su, H.J.: Modeling and validation of a novel bending actuator for soft robotics applications. Soft Rob. 3(2), 71–81 (2016)

    Article  Google Scholar 

  12. Aggarwal, A.: An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function. Biomech. Model. Mechanobiol. 16(4), 1309–1327 (2017)

    Article  Google Scholar 

  13. Martins, S.A.M., Aguirre, L.A.: Sufficient conditions for rate-independent hysteresis in autoregressive identified models. Mech. Syst. Signal Process. 75, 607–617 (2016)

    Article  Google Scholar 

  14. Chen, P., Bai, X.X., Qian, L.J., Choi, S.B.: An approach for hysteresis modeling based on shape function and memory mechanism. IEEE/ASME Trans. Mechatron. 23(3), 1270–1278 (2018)

    Article  Google Scholar 

  15. Nguyen, P.B., Choi, S.B., Song, B.K.: Development of a novel diagonal-weighted preisach model for rate-independent hysteresis. Proc. Inst. Mech. Engineers Part C: J. Mech. Eng. Sci. 231(5), 961–976 (2017)

    Article  Google Scholar 

  16. Xie, S., Mei, J., Liu, H., Wang, Y.: Hysteresis modeling and trajectory tracking control of the pneumatic muscle actuator using modified prandtl-ishlinskii model. Mech. Mach. Theory 120, 213–224 (2018)

    Article  Google Scholar 

  17. Liu, Y., Du, D., Qi, N., Zhao, J.: A distributed parameter maxwell-slip model for the hysteresis in piezoelectric actuators. IEEE Trans. Ind. Electron. 66(9), 7150–7158 (2018)

    Article  Google Scholar 

  18. Xie, S.L., Liu, H.T., Mei, J.P., Gu, G.Y.: Modeling and compensation of asymmetric hysteresis for pneumatic artificial muscles with a modified generalized prandtl-ishlinskii model. Mechatronics 52, 49–57 (2018)

    Article  Google Scholar 

  19. Pop, N., Caltun, O.: Jiles-atherton magnetic hysteresis parameters identification. Acta Physica Polonica, A. 120(3), 491–496 (2011)

    Article  Google Scholar 

  20. Shakiba, S., Ourak, M., Vander Poorten, E., Ayati, M., Yousefi-Koma, A.: Modeling and compensation of asymmetric rate-dependent hysteresis of a miniature pneumatic artificial muscle-based catheter. Mech. Syst. Signal Process. 154, 107532 (2021)

    Article  Google Scholar 

  21. Sabarianand, D., Karthikeyan, P., Muthuramalingam, T.: A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mech. Syst. Signal Process. 140, 106634 (2020)

    Article  Google Scholar 

  22. Xu, J., Xiao, M., Ding, Y.: Modeling and compensation of hysteresis for pneumatic artificial muscles based on gaussian mixture models. Sci. China Technol. Sci. 62(7), 1094–1102 (2019)

    Article  Google Scholar 

  23. Wu, Y., Fang, Y., Ren, X., Lu, H.: Back propagation neural networks based hysteresis modeling and compensation for a piezoelectric scanner. In: 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 119–124. IEEE (2016)

    Google Scholar 

  24. Zhang, Y., Gao, J., Yang, H., Hao, L.: A novel hysteresis modelling method with improved generalization capability for pneumatic artificial muscles. Smart Mater. Struct. 28(10), 105014 (2019)

    Article  Google Scholar 

  25. Mirikitani, D.T., Nikolaev, N.: Recursive bayesian recurrent neural networks for time-series modeling. IEEE Trans. Neural Netw. 21(2), 262–274 (2009)

    Article  Google Scholar 

  26. Huang, J., Qian, J., Liu, L., Wang, Y., Xiong, C., Ri, S.: Echo state network based predictive control with particle swarm optimization for pneumatic muscle actuator. J. Franklin Inst. 353(12), 2761–2782 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, X., et al.: Decentralized adaptive neural approximated inverse control for a class of large-scale nonlinear hysteretic systems with time delays. IEEE Trans. Syst, Man Cybern. Syst. 49(12), 2424–2437 (2018)

    Article  Google Scholar 

  28. Ru, H., Huang, J., Chen, W., Xiong, C.: Modeling and identification of rate-dependent and asymmetric hysteresis of soft bending pneumatic actuator based on evolutionary firefly algorithm. Mech. Mach. Theory 181, 105169 (2023). https://doi.org/10.1016/j.mechmachtheory.2022.105169

    Article  Google Scholar 

  29. Hu, W., Mutlu, R., Li, W., Alici, G.: A structural optimisation method for a soft pneumatic actuator. Robotics 7(2), 24 (2018)

    Article  Google Scholar 

  30. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German Natl. Res. Center Inf. Technol. GMD Tech. Rep. 148(34), 13 (2001)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant U1913207 and by the Program for HUST Academic Frontier Youth Team. The authors would like to thank the support from these foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ru, H., Huang, J., Wang, B. (2023). ESN-Based Control of Bending Pneumatic Muscle with Asymmetric and Rate-Dependent Hysteresis. In: Zhang, H., et al. International Conference on Neural Computing for Advanced Applications. NCAA 2023. Communications in Computer and Information Science, vol 1869. Springer, Singapore. https://doi.org/10.1007/978-981-99-5844-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5844-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5843-6

  • Online ISBN: 978-981-99-5844-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics