Skip to main content

Microfluidic Chips as Point-of-Care Testing for Develop Diagnostic Microdevices

  • Chapter
  • First Online:
Functionalized Smart Nanomaterials for Point-of-Care Testing

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 129 Accesses

Abstract

Rapid, specific, and reliable diagnostic tests in portable, easy-to-apply systems are of great importance for medical diagnosis, especially in emergencies such as pandemic outbreaks or in environments where resources are scarce. Point-of-care testing platforms are ideal for these purposes, providing fast and timely accurate results. Interest in laboratory-on-a-chip devices has grown rapidly in recent years. Innovative microfluidic devices that have gone through the technology development process have demonstrated the potential to perform unimaginable analyzes using traditional techniques. Advances in the microfluidics chip field have sparked innovative upheavals in various biomedical fields, such as single-cell detection, diagnostic methods, and micro- and nano-size-product manufacturing. Microfluidic chips currently play an important role in multiple biological technologies. Microfluidics have been shown to offer a number of benefits over existing conventional methods, thanks to improved controllability and precision. In this chapter, the authors discussed how point-of-care tests, developed by the integration of numerous nanomaterials into microfluidic chips, play an active role in the diagnosis and diagnosis of many diseases and their potential biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams ER, Ainsworth M, Anand R, Andersson MI, Auckland K, Baillie JK et al (2020) Antibody testing for COVID-19: a report from the National COVID scientific advisory panel. Wellcome Open Res 5:139. https://doi.org/10.12688/wellcomeopenres.15927.1

    Article  CAS  Google Scholar 

  2. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. https://doi.org/10.1038/nature01511

    Article  CAS  Google Scholar 

  3. Aimi F, Procopio MG, Alvarez Flores MT, Brouland JP, Piazzon N, Brajkovic S et al (2019) Microfluidic-based immunohistochemistry for breast cancer diagnosis: a comparative clinical study. Virchows Arch 475(3):313–323. https://doi.org/10.1007/s00428-019-02616-7

    Article  CAS  Google Scholar 

  4. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol 74(10):1376–1414. https://doi.org/10.1016/j.jacc.2019.03.009

    Article  Google Scholar 

  5. Azzouz A, Hejji L, Kim KH, Kukkar D, Souhail B, Bhardwaj N et al (2022) Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosens Bioelectron 197:113767. https://doi.org/10.1016/j.bios.2021.113767

    Article  CAS  Google Scholar 

  6. Beavis KG, Matushek SM, Abeleda APF, Bethel C, Hunt C, Gillen S et al (2020) Evaluation of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies. J Clin Virol 129:104468. https://doi.org/10.1016/j.jcv.2020.104468

    Article  CAS  Google Scholar 

  7. Becker H (2009) Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip 9(15):2119–2122. https://doi.org/10.1039/b911553f

    Article  CAS  Google Scholar 

  8. Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip 16(10):1720–1742. https://doi.org/10.1039/c6lc00163g

    Article  CAS  Google Scholar 

  9. Bircsak KM, DeBiasio R, Miedel M, Alsebahi A, Reddinger R, Saleh A et al (2021) A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology 450:152667. https://doi.org/10.1016/j.tox.2020.152667

    Article  CAS  Google Scholar 

  10. Boonkaew S, Jang I, Noviana E, Siangproh W, Chailapakul O, Henry CS (2021) Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens Actuators B Chem, 330

    Google Scholar 

  11. Brawer MK, Beatie J, Wener MH, Vessella RL, Preston SD, Lange PH (1993) Screening for prostatic carcinoma with prostate specific antigen: results of the second year. J Urol 150(1):106–109. https://doi.org/10.1016/s0022-5347(17)35409-5

    Article  CAS  Google Scholar 

  12. Cai Z, Liu Q (2021) Understanding the Global Cancer Statistics 2018: implications for cancer control. Sci China Life Sci 64(6):1017–1020. https://doi.org/10.1007/s11427-019-9816-1

    Article  Google Scholar 

  13. Celermajer DS, Chow CK, Marijon E, Anstey NM, Woo KS (2012) Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. J Am Coll Cardiol 60(14):1207–1216. https://doi.org/10.1016/j.jacc.2012.03.074

    Article  Google Scholar 

  14. Chakraborty I, Maity P (2020) COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci Total Environ 728:138882. https://doi.org/10.1016/j.scitotenv.2020.138882

    Article  CAS  Google Scholar 

  15. Chan HN, Tan MJA, Wu H (2017) Point-of-care testing: applications of 3D printing. Lab Chip 17(16):2713–2739. https://doi.org/10.1039/c7lc00397h

    Article  CAS  Google Scholar 

  16. Chen Q, He Z, Mao F, Pei H, Cao H, Liu X (2020) Diagnostic technologies for COVID-19: a review. RSC Adv 10(58):35257–35264. https://doi.org/10.1039/d0ra06445a

    Article  CAS  Google Scholar 

  17. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L et al (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359(6378):926–930. https://doi.org/10.1126/science.aar3247

    Article  CAS  Google Scholar 

  18. Deng H, Zhou X, Liu Q, Li B, Liu H, Huang R, Xing D (2017) Paperfluidic chip device for small RNA extraction, amplification, and multiplexed analysis. ACS Appl Mater Interfaces 9(47):41151–41158. https://doi.org/10.1021/acsami.7b12637

    Article  CAS  Google Scholar 

  19. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y, Ali F (2016) Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacology 24(1):1–10. https://doi.org/10.1007/s10787-015-0255-y

    Article  CAS  Google Scholar 

  20. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874. https://doi.org/10.1016/0019-2791(71)90454-x

  21. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M et al (2018) Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103:356–387. https://doi.org/10.1016/j.ejca.2018.07.005

    Article  CAS  Google Scholar 

  22. Filella X, Albaladejo MD, Allué JA, Castaño MA, Morell-Garcia D, Ruiz M et al (2019) Prostate cancer screening: guidelines review and laboratory issues. Clin Chem Lab Med 57(10):1474–1487. https://doi.org/10.1515/cclm-2018-1252

    Article  CAS  Google Scholar 

  23. Fu X, Wang Y, Liu Y, Liu H, Fu L, Wen J et al (2019) A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I. Analyst 144(5):1582–1589. https://doi.org/10.1039/c8an02022a

    Article  CAS  Google Scholar 

  24. Gallegos D, Long KD, Yu H, Clark PP, Lin Y, George S et al (2013) Label-free biodetection using a smartphone. Lab Chip 13(11):2124–2132. https://doi.org/10.1039/C3LC40991K

    Article  CAS  Google Scholar 

  25. Ghasemi A, Amiri H, Zare H, Masroor M, Hasanzadeh A, Beyzavi A et al (2017) Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. Microfluid Nanofluid 21(9). https://doi.org/10.1007/s10404-017-1989-1

  26. Hanash S (2003) Disease proteomics. Nature 422(6928):226–232. https://doi.org/10.1038/nature01514

    Article  CAS  Google Scholar 

  27. Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J (2020) Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 145(8):2828–2840. https://doi.org/10.1039/c9an02485a

    Article  CAS  Google Scholar 

  28. Huang X, Li Y, Chen J, Liu J, Wang R, Xu X et al (2019) Smartphone-based blood lipid data acquisition for cardiovascular disease management in internet of medical things. IEEE Access 7:75276–75283

    Article  Google Scholar 

  29. Iha K, Inada M, Kawada N, Nakaishi K, Watabe S, Tan YH et al (2019) Ultrasensitive ELISA developed for diagnosis. Diagnostics (Basel) 9(3). https://doi.org/10.3390/diagnostics9030078

  30. Jalal UM, Jin GJ, Shim JS (2017) Paper-plastic hybrid microfluidic device for smartphone-based colorimetric analysis of urine. Anal Chem 89(24):13160–13166. https://doi.org/10.1021/acs.analchem.7b02612

    Article  CAS  Google Scholar 

  31. Kaarj K, Akarapipad P, Yoon JY (2018) Simpler, faster, and sensitive Zika Virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci Rep 8(1):12438. https://doi.org/10.1038/s41598-018-30797-9

    Article  CAS  Google Scholar 

  32. Kadimisetty K, Song J, Doto AM, Hwang Y, Peng J, Mauk MG et al (2018) Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosens Bioelectron 109:156–163. https://doi.org/10.1016/j.bios.2018.03.009

    Article  CAS  Google Scholar 

  33. Karakaya M (2018) Analytical molecular diagnosis of cervical cancer via paper microfluidic chip. Proceedings 2:1556. https://doi.org/10.3390/proceedings2251556

  34. Koirala J, Acharya S, Rijal N (2021) Impact of healthy life, education and living standard on spread of COVID-19 in developed and underdeveloped countries. Social Science Research Network

    Google Scholar 

  35. Lamb LE, Bartolone SN, Ward E, Chancellor MB (2020) Rapid detection of novel coronavirus/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. Plos One 15(6):e0234682. https://doi.org/10.1371/journal.pone.0234682

    Article  CAS  Google Scholar 

  36. Li F, Guo L, Hu Y, Li Z, Liu J, He J, Cui H (2020) Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper-based immunodevice dual amplified by multifunctionalized gold nanoparticles. Talanta 207:120346. https://doi.org/10.1016/j.talanta.2019.120346

    Article  CAS  Google Scholar 

  37. Lim J, Kang B, Son HY, Mun B, Huh YM, Rho HW et al (2022) Microfluidic device for one-step detection of breast cancer-derived exosomal mRNA in blood using signal-amplifiable 3D nanostructure. Biosens Bioelectron 197:113753. https://doi.org/10.1016/j.bios.2021.113753

    Article  CAS  Google Scholar 

  38. Lim WY, Thevarajah TM, Goh BT, Khor SM (2019) Paper microfluidic device for early diagnosis and prognosis of acute myocardial infarction via quantitative multiplex cardiac biomarker detection. Biosens Bioelectron 128:176–185. https://doi.org/10.1016/j.bios.2018.12.049

    Article  CAS  Google Scholar 

  39. Lin Q, Wen D, Wu J, Liu L, Wu W, Fang X, Kong J (2020) Microfluidic immunoassays for sensitive and simultaneous detection of IgG/IgM/antigen of SARS-CoV-2 within 15 min. Anal Chem 92(14):9454–9458. https://doi.org/10.1021/acs.analchem.0c01635

    Article  CAS  Google Scholar 

  40. Liu C, Xue N, Cai H, Sun J, Qi Z, Zhao P et al (2020) Nanoparticles enhanced self-driven microfludic biosensor. Micromachines (Basel) 11(4). https://doi.org/10.3390/mi11040350

  41. Liu SH, Chen PS, Huang CC, Hung YT, Lee MY, Lin WH et al (2020) Unlocking the mystery of the therapeutic effects of Chinese medicine on cancer. Front Pharmacol 11:601785. https://doi.org/10.3389/fphar.2020.601785

    Article  CAS  Google Scholar 

  42. Liu Y, Ao X, Yu W, Zhang Y, Wang J (2022) Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. Mol Ther Nucleic Acids 27:50–72. https://doi.org/10.1016/j.omtn.2021.11.013

    Article  CAS  Google Scholar 

  43. Ma Q, Ma H, Xu F, Wang X, Sun W (2021) Microfluidics in cardiovascular disease research: state of the art and future outlook. Microsyst Nanoeng 7:19. https://doi.org/10.1038/s41378-021-00245-2

    Article  CAS  Google Scholar 

  44. Mabey D, Peeling RW, Ustianowski A, Perkins MD (2004) Diagnostics for the developing world. Nat Rev Microbiol 2(3):231–240. https://doi.org/10.1038/nrmicro841

    Article  CAS  Google Scholar 

  45. Mandal N, Pakira V, Samanta N, Das N, Chakraborty S, Pramanick B, RoyChaudhuri C (2021) PSA detection using label free graphene FET with coplanar electrodes based microfluidic point of care diagnostic device. Talanta 222:121581. https://doi.org/10.1016/j.talanta.2020.121581

    Article  CAS  Google Scholar 

  46. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40. https://doi.org/10.1002/(sici)1522-2683(20000101)21:1%3c27::aid-elps27%3e3.0.co;2-c

    Article  CAS  Google Scholar 

  47. Moznuzzaman M, Khan I, Islam MR (2021) Nano-layered surface plasmon resonance-based highly sensitive biosensor for virus detection: a theoretical approach to detect SARS-CoV-2. AIP Adv 11(6):065023. https://doi.org/10.1063/5.0046574

    Article  CAS  Google Scholar 

  48. Munge BS, Stracensky T, Gamez K, DiBiase D, Rusling JF (2016) Multiplex immunosensor arrays for electrochemical detection of cancer biomarker proteins. Electroanalysis 28(11):2644–2658. https://doi.org/10.1002/elan.201600183

    Article  CAS  Google Scholar 

  49. Nascimento EJM, George JK, Velasco M, Bonaparte MI, Zheng L, DiazGranados CA et al (2018) Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods 257:48–57. https://doi.org/10.1016/j.jviromet.2018.03.007

    Article  CAS  Google Scholar 

  50. Nilsson T, Mann M, Aebersold R, Yates JR 3rd, Bairoch A, Bergeron JJ (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7(9):681–685. https://doi.org/10.1038/nmeth0910-681

    Article  CAS  Google Scholar 

  51. Nunna BB, Mandal D, Zhuang S, Lee ES (2017) A standalone micro biochip to monitor the cancer progression by measuring cancer antigens as a point-of-care (POC) device for enhanced cancer management. In: 2017 IEEE healthcare innovations and point of care technologies (HI-POCT), pp 212–215

    Google Scholar 

  52. Nurtop E, Villarroel PMS, Pastorino B, Ninove L, Drexler JF, Roca Y et al (2019) Correction to: combination of ELISA screening and seroneutralisation tests to expedite Zika virus seroprevalence studies. Virol J 16(1):12. https://doi.org/10.1186/s12985-019-1118-8

    Article  Google Scholar 

  53. Ouyang M, Tu D, Tong L, Sarwar M, Bhimaraj A, Li C et al (2021) A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care. Biosens Bioelectron 171:112621. https://doi.org/10.1016/j.bios.2020.112621

    Article  CAS  Google Scholar 

  54. Park J, Han DH, Park JK (2020) Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab Chip 20(7):1191–1203. https://doi.org/10.1039/d0lc00047g

    Article  CAS  Google Scholar 

  55. Park S, Zhang Y, Lin S, Wang TH, Yang S (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29(6):830–839. https://doi.org/10.1016/j.biotechadv.2011.06.017

    Article  CAS  Google Scholar 

  56. Pascual-Garrigos A, Maruthamuthu MK, Ault A, Davidson JL, Rudakov G, Pillai D et al (2021) On-farm colorimetric detection of Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni in crude bovine nasal samples. Vet Res 52(1):126. https://doi.org/10.1186/s13567-021-00997-9

    Article  CAS  Google Scholar 

  57. Pedde RD, Li H, Borchers CH, Akbari M (2017) Microfluidic-mass spectrometry interfaces for translational proteomics. Trends Biotechnol 35(10):954–970. https://doi.org/10.1016/j.tibtech.2017.06.006

    Article  CAS  Google Scholar 

  58. Percy AJ, Byrns S, Pennington SR, Holmes DT, Anderson NL, Agreste TM, Duffy MA (2016) Clinical translation of MS-based, quantitative plasma proteomics: status, challenges, requirements, and potential. Expert Rev Proteomics 13(7):673–684. https://doi.org/10.1080/14789450.2016.1205950

    Article  CAS  Google Scholar 

  59. Rajendran M, Nachbagauer R, Ermler ME, Bunduc P, Amanat F, Izikson R et al (2017) Analysis of anti-influenza virus neuraminidase antibodies in children, adults, and the elderly by ELISA and enzyme inhibition: evidence for original antigenic sin. mBio 8(2). https://doi.org/10.1128/mBio.02281-16

  60. Raju SP, Chu X (2018) Rapid low-cost microfluidic detection in point of care diagnostics. J Med Syst 42(10):184. https://doi.org/10.1007/s10916-018-1043-1

    Article  Google Scholar 

  61. Rezqalla J, Alshatti M, Ibraheem A, Omar D, Houda AF, AlHaqqan S et al (2021) Human papillomavirus (HPV): unawareness of the causal role of HPV infection in cervical cancer, HPV vaccine availability, and HPV vaccine uptake among female schoolteachers in a middle Eastern country. J Infect Public Health 14(5):661–667. https://doi.org/10.1016/j.jiph.2021.01.015

    Article  Google Scholar 

  62. Salehipour Masooleh H, Ghavami Lahiji M, Ciancio A, Tayebi L (2020) Microfluidic technologies using oral factors: saliva based studies. Applications of biomedical engineering in dentistry. Springer, Cham, Switzerland, pp 339–358

    Chapter  Google Scholar 

  63. Song J, Mauk MG, Hackett BA, Cherry S, Bau HH, Liu C (2016) Instrument-free point-of-care molecular detection of Zika virus. Anal Chem 88(14):7289–7294. https://doi.org/10.1021/acs.analchem.6b01632

    Article  CAS  Google Scholar 

  64. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026. https://doi.org/10.1103/RevModPhys.77.977

    Article  CAS  Google Scholar 

  65. Su W, Li H, Chen W, Qin J (2019) Microfluidic strategies for label-free exosomes isolation and analysis. TrAC Trends Anal Chem

    Google Scholar 

  66. Tan AS, Nerurkar SN, Tan WCC, Goh D, Lai CPT, Poh Sheng Yeong J (2020) The virological, immunological, and imaging approaches for COVID-19 diagnosis and research. SLAS Technol 25(6):522–544. https://doi.org/10.1177/2472630320950248

  67. Tayyab M, Sami MA, Raji H, Mushnoori S, Javanmard M (2021) Potential microfluidic devices for COVID-19 antibody detection at point-of-care (POC): a review. IEEE Sens J 21:4007–4017

    Article  CAS  Google Scholar 

  68. Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Dev 26:1880–1885. https://doi.org/10.1109/t-ed.1979.19791

    Article  Google Scholar 

  69. To KK, Tsang OT, Yip CC, Chan KH, Wu TC, Chan JM et al (2020) Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis 71(15):841–843. https://doi.org/10.1093/cid/ciaa149

    Article  CAS  Google Scholar 

  70. Voller A, Bartlett A, Bidwell DE, Clark MF, Adams AN (1976) The detection of viruses by enzyme-linked immunosorbent assay (ELISA). J Gen Virol 33(1):165–167. https://doi.org/10.1099/0022-1317-33-1-165

    Article  CAS  Google Scholar 

  71. Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC (2016) 3D printed microfluidic devices: enablers and barriers. Lab Chip 16(11):1993–2013. https://doi.org/10.1039/c6lc00284f

    Article  CAS  Google Scholar 

  72. Wang CH, Lai HC, Liou TM, Hsu KF, Chou CY, Lee GB (2013) A DNA methylation assay for detection of ovarian cancer cells using a HpaII/MspI digestion-based PCR assay in an integrated microfluidic system. Microfluid Nanofluid 15:575–585

    Article  CAS  Google Scholar 

  73. Wang J, Dextre A, Pascual-Garrigos A, Davidson JL, McChesney D, Seville J, Verma MS (2021) Fabrication of a paper-based colorimetric molecular test for SARS-CoV-2. MethodsX 8:101586. https://doi.org/10.1016/j.mex.2021.101586

    Article  CAS  Google Scholar 

  74. Wojtczak J, Bonadonna P (2013) Pocket mobile smartphone system for the point-of-care submandibular ultrasonography. Am J Emerg Med 31(3):573–577. https://doi.org/10.1016/j.ajem.2012.09.013

    Article  Google Scholar 

  75. Xu D, Huang X, Guo J, Ma X (2018) Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron 110:78–88. https://doi.org/10.1016/j.bios.2018.03.018

    Article  CAS  Google Scholar 

  76. Xu X, Akay A, Wei H, Wang S, Pingguan-Murphy B, Erlandsson B-E et al (2015) Advances in smartphone-based point-of-care diagnostics. Proc IEEE 103:236–247. https://doi.org/10.1109/JPROC.2014.2378776

    Article  CAS  Google Scholar 

  77. Yamada K, Shibata H, Suzuki K, Citterio D (2017) Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17(7):1206–1249. https://doi.org/10.1039/c6lc01577h

    Article  CAS  Google Scholar 

  78. Yan J, Yang Q, Li W, Yu J, Xie J, Xiang J, Wang H (2019) Two desired epitopes of cTnI benefit for preparation of standardized monoclonal antibodies. Chirality 31(4):321–327. https://doi.org/10.1002/chir.23058

    Article  CAS  Google Scholar 

  79. Yang K, Peretz-Soroka H, Liu Y, Lin F (2016) Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab Chip 16(6):943–958. https://doi.org/10.1039/c5lc01524c

    Article  CAS  Google Scholar 

  80. Yang Q, Cheng L, Hu L, Lou D, Zhang T, Li J et al (2020) An integrative microfluidic device for isolation and ultrasensitive detection of lung cancer-specific exosomes from patient urine. Biosens Bioelectron 163:112290. https://doi.org/10.1016/j.bios.2020.112290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Ocsoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Celik, C., Akcay, G., Ildız, N., Ocsoy, I. (2024). Microfluidic Chips as Point-of-Care Testing for Develop Diagnostic Microdevices. In: Mandal, A.K., Ghorai, S., Husen, A. (eds) Functionalized Smart Nanomaterials for Point-of-Care Testing. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5787-3_6

Download citation

Publish with us

Policies and ethics