Skip to main content

Initial Flow Behavior in Laminar Line Source Twin Plumes of Equal Strength

  • Conference paper
  • First Online:
Fluid Mechanics and Fluid Power, Volume 6 (FMFP 2022)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 106 Accesses

Abstract

We present two-dimensional direct numerical simulations for two laminar line source plumes of equal strength, which are placed side by side at the same level, in an open surrounding, with the supply of constant heat flux at the heat sources. We have performed the simulation for the effective Rayleigh number (based on constant heat flux supplied at the heat source) \(1 \times 10^{6}\) and Prandtl number 7, for different source separations as 2D, 3D, 4D, 5D, 6D, and equivalent single plume, where D is the diameter of the cylindrical heat source. We observed that with the increase in source separations, the plume ejects more mass sideways after merging, which leads to an increase in the heat transfer in the lateral direction in a quadratic fashion. Also, for larger source separations, the merged plume becomes more stable and hence rises with lesser fluctuations in vertical velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

d:

Source separation [m]

g:

Gravitational acceleration [m/s2]

p:

Dynamic pressure [kg/ms2]

P:

Power supplied at source [W]

\(\overline{{q_{x} }}\):

Mean heat flux in x-direction [W/m2]

Q:

Total heat transfer [J]

Qref:

Reference total heat transfer [J]

R:

Radius of the cylindrical heater [m]

Raf:

Rayleigh flux number

t:

Time [s]

T:

Temperature field [K]

Tm:

Mean temperature [K]

u:

X-Component of velocity field [m/s]

v:

Y-Component of velocity field [m/s]

u:

Velocity field vector [m/s]

Uref:

Reference velocity [m/s]

\(v_{{{\text{rms}}}}^{\prime}\):

Root mean square of vertical velocity fluctuation [m/s]

\(\sigma\):

Prandtl number [–]

\(\nu\):

Kinematic viscosity [m2/s]

\(\alpha\):

Thermal expansion coefficient [1/K]

\(\kappa\):

Thermal diffusivity [m2/s]

\(\rho\):

Fluid density [kg/m3]

\(\tau\):

Reference time [s]

\(\chi\):

Reference temperature [K]

References

  1. Batchelor GK (1954) Heat convection and buoyancy effects in fluids. Q J R Meteorol Soc 80(345):339–358

    Article  Google Scholar 

  2. Durve A, Patwardhan AW, Banarjee I, Padmakumar G, Vaidyanathan G (2012) Numerical investigation of mixing in parallel jets. Nucl Eng Des 242:78–90

    Article  Google Scholar 

  3. Fay JA (1973) Buoyant plumes and wakes. Annu Rev Fluid Mech 5(1):151–160

    Article  Google Scholar 

  4. French SW, Romanowicz B (2015) Broad plumes rooted at the base of the earth’s mantle beneath major hotspots. Nature 525(7567):95–99

    Article  Google Scholar 

  5. Gao X, Li A, Yang C (2018) Study on thermal stratification of an enclosure containing two interacting turbulent buoyant plumes of equal strength. Build Environ 141:236–246

    Article  Google Scholar 

  6. Gebhart B, Shaukatullah H, Pera L (1976) The interaction of unequal laminar plane plumes. Int J Heat Mass Transf 19(7):751–756

    Article  Google Scholar 

  7. Ichimiya K, Saiki H (2005) Behavior of thermal plumes from two-heat sources in an enclosure. Int J Heat Mass Transf 48(16):3461–3468

    Article  Google Scholar 

  8. Jasak H, Jemcov A, Tukovic Z et al (2007) Openfoam: a C++ library for complex physics simulations. In: International workshop on coupled methods in numerical dynamics, vol 1000. IUC Dubrovnik Croatia, pp 1–20

    Google Scholar 

  9. Kaminski E, Jaupart C (2003) Laminar starting plumes in high-Prandtl-number fluids. J Fluid Mech 478:287–298

    Article  Google Scholar 

  10. Kar PK, Kumar YN, Das PK, Lakkaraju R (2020) Thermal convection in octagonal-shaped enclosures. Phys Rev Fluids 5(10):103501

    Google Scholar 

  11. Kaye NB, Linden P (2004) Coalescing axisymmetric turbulent plumes. J Fluid Mech 502:41–63

    Article  MathSciNet  Google Scholar 

  12. List EJ (1982) Turbulent jets and plumes. Annu Rev Fluid Mech 14(1):189–212

    Article  Google Scholar 

  13. Moses E, Zocchi G, Libchaberii A (1993) An experimental study of laminar plumes. J Fluid Mech 251:581–601

    Article  Google Scholar 

  14. Moses E, Zocchi G, Procaccia I, Libchaber A (1991) The dynamics and interaction of laminar thermal plumes. EPL (Europhys Lett) 14(1):55

    Google Scholar 

  15. Nandukumar Y, Chakraborty S, Verma MK, Lakkaraju R (2019) On heat transport and energy partition in thermal convection with mixed boundary conditions. Phys Fluids 31(6):066601

    Google Scholar 

  16. Pandey A, Kumar A, Chatterjee AG, Verma MK (2016) Dynamics of large-scale quantities in Rayleigh-Bénard convection. Phys Rev E 94(5):053106

    Google Scholar 

  17. Pandey A, Scheel JD, Schumacher J (2018) Turbulent super-structures in Rayleigh-Bénard convection. Nat Commun 9(1):1–11

    Article  Google Scholar 

  18. Pandey A, Verma MK (2016) Scaling of large-scale quantities in Rayleigh-Bénard convection. Phys Fluids 28(9):095105

    Google Scholar 

  19. Pera L, Gebhart B (1975) Laminar plume interactions. J Fluid Mech 68(2):259–271

    Article  Google Scholar 

  20. Poel EPVD, Verzicco R, Grossmann S, Lohse D (2015) Plume emission statistics in turbulent Rayleigh-Bénard convection. J Fluid Mech 772:5

    Article  Google Scholar 

  21. Rogers MC, Morris SW (2009) Natural versus forced convection in laminar starting plumes. Phys Fluids 21(8):083601

    Google Scholar 

  22. Solomon TH, Gollub JP (1990) Sheared boundary layers in turbulent Rayleigh-Bénard convection. Phys Rev Lett 64(20):2382

    Google Scholar 

  23. Sparrow EM, Husar RB, Goldstein RJ (1970) Observations and other characteristics of thermals. J Fluid Mech 41(4):793–800

    Article  Google Scholar 

  24. Turner JS (1969) Buoyant plumes and thermals. Annu Rev Fluid Mech 1(1):29–44

    Article  Google Scholar 

  25. Woods AW (2010) Turbulent plumes in nature. Annu Rev Fluid Mech 42:391–412

    Article  Google Scholar 

  26. Worster G, Moffatt K, Batchelor G (2000) Perspectives in fluid dynamics: a collective introduction to current research. Cambridge University Press, Cambridge, UK

    Google Scholar 

  27. Xi HD, Lam S, Xia KQ (2004) From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J Fluid Mech 503:47–56

    Article  Google Scholar 

  28. Yang C, Li A, Gao X, Ren T (2020) Interaction of the thermal plumes generated from two heat sources of equal strength in a naturally ventilated space. J Wind Eng Ind Aerodyn 198:104085

    Article  Google Scholar 

  29. Yin S, Li Y, Fan Y, Sandberg M (2018) Unsteady large-scale flow patterns and dynamic vortex movement in near-field triple buoyant plumes. Build Environ 142:288–300

    Article  Google Scholar 

  30. Zocchi G, Moses E, Libchaber A (1990) Coherent structures in turbulent convection, an experimental study. Physica A 166(3):387–407

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank National Super Computing Mission-India and Param Shakti for providing the necessary computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal Chetan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chetan, U., Kar, P.K., Sahu, T.L., Dhopeshwar, S., Lakkaraju, R. (2024). Initial Flow Behavior in Laminar Line Source Twin Plumes of Equal Strength. In: Singh, K.M., Dutta, S., Subudhi, S., Singh, N.K. (eds) Fluid Mechanics and Fluid Power, Volume 6. FMFP 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-5755-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5755-2_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5754-5

  • Online ISBN: 978-981-99-5755-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics