Skip to main content

Electrochemical Biosensors for Ions Detection

  • Chapter
  • First Online:
Electrochemical Biosensors for Whole Blood Analysis
  • 198 Accesses

Abstract

As one of the most important biological fluids, whole blood provides important information for health management and disease monitoring. Ions are an important component of blood and carry key information for early diagnosis of diseases. Therefore, a highly selective, sensitive, accurate, and reliable technology is needed to detect the ion content in blood to monitor the health status. Among them, electrochemical biosensors are famous for their advantages in detecting ions in blood, such as quickness, sensitivity, reagent-free, and cleaning-free. In order to achieve the sensitivity and selectivity of blood analysis, electrochemical biosensors have explored many strategies, including the use of hierarchical electrodes, nanomaterial modification, and enzyme amplification. Here, we aim to comprehensively review all these advances, challenges, and opportunities in electrochemical biosensors for the detection of ions in blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10:472–484

    Article  CAS  Google Scholar 

  2. Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231

    Article  CAS  Google Scholar 

  3. Ring G, O’Mullane J, O’Riordan A, Furey A (2016) Trace metal determination as it relates to metallosis of orthopaedic implants: evolution and current status. Clin Biochem 49:617–635

    Article  CAS  Google Scholar 

  4. Jozanovic M, Sakac N, Karnas M, Medvidovic-Kosanovic M (2021) Potentiometric sensors for the determination of anionic surfactants-a review. Crit Rev Anal Chem 51:115–137

    Article  CAS  Google Scholar 

  5. Shi HH, Jiang SF, Liu B, Liu ZC, Reis NM (2021) Modern microfluidic approaches for determination of ions. MicrochemJ 171:106845

    Article  CAS  Google Scholar 

  6. Kozlowski H, Kolkowska P, Watly J, Krzywoszynska K, Potocki S (2014) General aspects of metal toxicity. Curr Med Chem 21:3721–3740

    Article  CAS  Google Scholar 

  7. Daniya W, Saleviter S, Fen YW (2018) Development of surface plasmon resonance spectroscopy for metal ion detection. Sensor Mater 30:2023–2038

    Article  Google Scholar 

  8. Johnson DK, Combs SM, Parsen JD, Jolley ME (2002) Lead analysis by anti-chelate fluorescence polarization immunoassay. Environ Sci Technol 36:1042–1047

    Article  CAS  Google Scholar 

  9. Kandemir S, Dogru MI, Orun I, Dogru A, Altas L, Erdogan K, Orun G, Polat N (2010) Determination of heavy metal levels, oxidative status, biochemical and hematological parameters in cyprinus carpio L., 1758 from Bafra (Samsun) fish lakes. J Anim Vet Adv 9:617–622

    Article  CAS  Google Scholar 

  10. Beeram S, Merchant ME, Sneddon J (2012) Studies of metals in crocodilians by spectrochemical methods. Appl Spectrosc Rev 47:144–162

    Article  CAS  Google Scholar 

  11. Shokrekhodaei M, Quinones S, Fazel Z, Nazeran H (2019) Signal processing of amperometric biosensors for emerging blood glucose measurement/monitoring. Adv Electr Electron Eng 17:64–73

    Google Scholar 

  12. Zhang P, Sun TT, Rong SZ, Zeng DD, Yu HW, Zhang Z, Chang D, Pan HZ (2019) A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite. Bioelectrochemistry 127:163–170

    Article  CAS  Google Scholar 

  13. Lai CY, Foot PJS, Brown JW, Spearman P (2017) A urea potentiometric biosensor based on a thiophene copolymer. Biosensors-Basel 7:13

    Article  Google Scholar 

  14. Qin JF, Sun H, Hao HY, Jia LJ, Yao CZ, Wang QQ, Yang HY (2019) Impedimetric biosensor for the detection of bacterial lipopolysaccharide based on lectin-functionalized gold nanoparticle-graphene composites. Sensor Mater 31:2917–2929

    Article  CAS  Google Scholar 

  15. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Copper active sites in biology. Chem Rev 114:3659–3853

    Article  CAS  Google Scholar 

  16. Song YJ, Qu KG, Xu C, Ren JS, Qu XG (2010) Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chem Commun 46:6572–6574

    Article  CAS  Google Scholar 

  17. Li L, Feng J, Fan YY, Tang B (2015) Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle. Anal Chem 87:4829–4835

    Article  CAS  Google Scholar 

  18. Jin JC, Wu J, Yang GP, Wu YL, Wang YY (2016) A microporous anionic metal-organic framework for a highly selective and sensitive electrochemical sensor of Cu2+ ions. Chem Commun 52:8475–8478

    Article  CAS  Google Scholar 

  19. Zhao Z, Chen HD, Zhang H, Ma LN, Wang ZX (2017) Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for rapid detection and removal of copper(II) ions. Biosens Bioelectron 91:306–312

    Article  CAS  Google Scholar 

  20. Jo J, Lee HY, Liu WJ, Olasz A, Chen CH, Lee D (2012) Reactivity-based detection of copper(II) ion in water: oxidative cyclization of azoaromatics as fluorescence turn-on signaling mechanism. J Am Chem Soc 134:16000–16007

    Article  CAS  Google Scholar 

  21. Jin LH, Han CS (2014) Ultrasensitive and selective fluorimetric detection of copper ions using thiosulfate-involved quantum dots. Anal Chem 86:7209–7213

    Article  CAS  Google Scholar 

  22. Su SW, Chen BB, He M, Hu B (2014) Graphene oxide-silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 123:1–9

    Article  CAS  Google Scholar 

  23. Zhao XP, Wang SS, Younis MR, Xia XH, Wang C (2018) Asymmetric nanochannel-ionchannel hybrid for ultrasensitive and label-free detection of copper ions in blood. Anal Chem 90:896–902

    Article  CAS  Google Scholar 

  24. Safavi A, Farjami E (2011) Construction of a carbon nanocomposite electrode based on amino acids functionalized gold nanoparticles for trace electrochemical detection of mercury. Anal Chim Acta 688:43–48

    Article  CAS  Google Scholar 

  25. Xie H, Wang Q, Chai YQ, Yuan YL, Yuan R (2016) Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg2+. Biosens Bioelectron 86:630–635

    Article  CAS  Google Scholar 

  26. Kristian KE, Friedbauer S, Kabashi D, Ferencz KM, Barajas JC, O’Brien K (2015) A simplified digestion protocol for the analysis of Hg in fish by cold vapor atomic absorption spectroscopy. J Chem Educ 92:698–702

    Article  CAS  Google Scholar 

  27. Lin Y, Yang Y, Li YX, Yang L, Hou XD, Feng XB, Zheng CB (2016) Ultrasensitive speciation analysis of mercury in rice by headspace solid phase microextraction using porous carbons and gas chromatography-dielectric barrier discharge optical emission spectrometry. Environ Sci Technol 50:2468–2476

    Article  CAS  Google Scholar 

  28. Wu L, Long Z, Liu LW, Zhou Q, Lee YI, Zheng CB (2012) Microwave-enhanced cold vapor generation for speciation analysis of mercury by atomic fluorescence spectrometry. Talanta 94:146–151

    Article  CAS  Google Scholar 

  29. Sahu D, Sahoo G, Mohapatra P, Swain SK (2019) Dual activities of nano silver embedded reduced graphene oxide using clove leaf extracts: Hg2+ sensing and catalytic degradation. ChemistrySelect 4:2593–2602

    Article  CAS  Google Scholar 

  30. Liu LX, Luo CH, Zhang JH, He X, Shen Y, Yan B, Huang Y, Xia F, Jiang L (2022) Synergistic effect of bio-inspired nanochannels: hydrophilic DNA probes at inner wall and hydrophobic coating at outer surface for highly sensitive detection. Small 18:2201925

    Article  CAS  Google Scholar 

  31. Lanphear BP, Rauch S, Auinger P, Allen RW, Hornung RW (2018) Low-level lead exposure and mortality in US adults: a population-based cohort study. Lancet Public Health 3:E177–E184

    Article  Google Scholar 

  32. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurstl P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Persp 113:894–899

    Article  CAS  Google Scholar 

  33. Swetha P, Chen JN, Kumar AS, Feng SP (2020) High index facets-Ag nano flower enabled efficient electrochemical detection of lead in blood serum and cosmetics. J Electroanal Chem 878:114657

    Article  CAS  Google Scholar 

  34. Berend K, van Hulsteijn LH, Gans ROB (2012) Chloride: the queen of electrolytes? Eur J Intern Med 23:203–211

    Article  CAS  Google Scholar 

  35. Cinti S, Fiore L, Massoud R, Cortese C, Moscone D, Palleschi G, Arduini F (2018) Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta 179:186–192

    Article  CAS  Google Scholar 

  36. Pirovano P, Dorrian M, Shinde A, Donohoe A, Brady AJ, Moyna NM, Wallace G, Diamond D, McCaul M (2020) A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 219:121145

    Article  CAS  Google Scholar 

  37. Chen LD, Wang WJ, Wang GJ (2021) Electrochemical detection of electrolytes using a solid-state ion-selective electrode of single-piece type membrane. Biosensors-Basel 11:109

    Article  CAS  Google Scholar 

  38. Rahman S, Waheed S (2009) Validation of INAA and AAS analysis protocols for whole blood: a study on cardiovascular and malignant hypertensive patients. J Radioanal Nucl Chem 279:915–921

    Article  CAS  Google Scholar 

  39. Lu TH, Huang JF, Sun IW (2002) Perfluorinated anion-exchange polymer mercury film electrode for anodic stripping voltammetric determination of zinc(II): effect of model organic compounds. Anal Chim Acta 454:93–100

    Article  CAS  Google Scholar 

  40. Nikolaev KG, Kalmykov EV, Shavronskaya DO, Nikitina AA, Stekolshchikova AA, Kosareva EA, Zenkin AA, Pantiukhin IS, Orlova OY, Skalny AV, Skorb EV (2020) ElectroSens platform with a polyelectrolyte-based carbon fiber sensor for point-of-care analysis of Zn in blood and urine. ACS Omega 5:18987–18994

    Article  CAS  Google Scholar 

  41. Gidlow DA (2015) Lead toxicity. Occup Med-Oxford 65:348–356

    Article  CAS  Google Scholar 

  42. Carpenter WE, Lam D, Toney GM, Weintraub NL, Qin ZY (2013) Zinc, copper, and blood pressure: human population studies. Med Sci Monit 19:1–8

    Article  Google Scholar 

  43. Durai L, Badhulika S (2022) Stripping voltammetry and chemometrics assisted ultra-selective, simultaneous detection of trace amounts of heavy metal ions in aqua and blood serum samples. Sensor Actuat Rep 4:100097

    Google Scholar 

  44. Kovalchuk O, Titov V, Hohn B, Kovalchuk I (2001) A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nat Biotechnol 19:568–572

    Article  CAS  Google Scholar 

  45. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water-an electrochemical approach. Sensor Actuat B-Chem 213:515–533

    Article  CAS  Google Scholar 

  46. Cassone G, Chille D, Foti C, Giuffre O, Ponterio RC, Sponer J, Saija F (2018) Stability of hydrolytic arsenic species in aqueous solutions: As3+ vs. As5+. Phys Chem Chem Phys 20:23272–23280

    Article  CAS  Google Scholar 

  47. Durai L, Badhulika S (2020) Ultra-selective, trace level detection of As3+ ions in blood samples using PANI coated BiVO4 modified SPCE via differential pulse anode stripping voltammetry. Mater Sci Eng C-Mater Biol Appl 111:110806

    Article  CAS  Google Scholar 

  48. Qi Y, Jiang M, Cui YL, Zhao L, Liu SJ (2015) Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin-Cr(III) complex. J Hazard Mater 285:336–345

    Article  CAS  Google Scholar 

  49. Collins BJ, Stout MD, Levine KE, Kissling GE, Melnick RL, Fennell TR, Walden R, Abdo K, Pritchard JB, Fernando RA, Burka LT, Hooth MJ (2010) Exposure to hexavalent chromium resulted in significantly higher tissue chromium burden compared with trivalent chromium following similar oral doses to male F344/N rats and female B6C3F1 mice. Toxicol Sci 118:368–379

    Article  CAS  Google Scholar 

  50. Ou YQ, Bloom MS, Nie ZQ, Han FZ, Mai JZ, Chen JM, Lin S, Liu XQ, Zhuang J (2017) Associations between toxic and essential trace elements in maternal blood and fetal congenital heart defects. Environ Int 106:127–134

    Article  CAS  Google Scholar 

  51. Zhao R, Li X, Sun BL, Li YZ, Li YM, Yang R, Wang C (2017) Branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane: a novel and effective adsorbent for Cr(VI) remediation in wastewater. J Mater Chem A 5:1133–1144

    Article  CAS  Google Scholar 

  52. Pan Y, Guan DX, Zhao D, Luo J, Zhang H, Davison W, Ma LQ (2015) Novel speciation method based on diffusive gradients in thin-films for in situ measurement of Cr-VI in aquatic systems. Environ Sci Technol 49:14267–14273

    Article  CAS  Google Scholar 

  53. Qi SP, Zhao B, Tang HQ, Jiang XQ (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 161:395–402

    Article  CAS  Google Scholar 

  54. Chen H, Shao SB, Yu YQ, Huang YY, Zhu XT, Zhang SY, Fan J, Yin GY, Chi B, Wan MM, Mao C (2020) A dual-responsive biosensor for blood lead detection. Anal Chim Acta 1093:131–141

    Article  CAS  Google Scholar 

  55. Fang D, Xu TT, Fang LY, Chen H, Huang YY, Zhang HY, Miao ZY, Mao C, Chi B, Xu H (2021) A blood compatible, high-efficient sensor for detection of Cr(VI) in whole blood. Sensor Actuat B-Chem 329:129219

    Article  CAS  Google Scholar 

  56. Zhai DY, Liu BR, Shi Y, Pan LJ, Wang YQ, Li WB, Zhang R, Yu GH (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7:3540–3546

    Article  CAS  Google Scholar 

  57. Xu QH, Wang YL, Jin LQ, Wang Y, Qin MH (2017) Adsorption of Cu(II), Pb(II) and Cr(VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J Hazard Mater 339:91–99

    Article  CAS  Google Scholar 

  58. Szabadkai G, Duchen MR (2008) Mitochondria: the hub of cellular Ca2+ signaling. Physiology 23:84–94

    Article  CAS  Google Scholar 

  59. Yang JX, He YB, Song XL, Lai LN, Li JB, Guo BP (2012) A novel sensitive biosensor for Ca2+ ion based on gold nanoparticles modified electrode by pulsed electrodeposition. Anal Lett 45:2436–2444

    Article  CAS  Google Scholar 

  60. Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L (2011) The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 68:205–218

    Article  CAS  Google Scholar 

  61. Berchmans S, Issa TB, Singh P (2012) Determination of inorganic phosphate by electroanalytical methods: a review. Anal Chim Acta 729:7–20

    Article  CAS  Google Scholar 

  62. Talarico D, Arduini F, Amine A, Moscone D, Palleschi G (2015) Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex. Talanta 141:267–272

    Article  CAS  Google Scholar 

  63. Xu K, Kitazumi Y, Kano K, Shirai O (2018) Phosphate ion sensor using a cobalt phosphate coated cobalt electrode. Electrochim Acta 282:242–246

    Article  CAS  Google Scholar 

  64. Talarico D, Cinti S, Arduini F, Amine A, Moscone D, Palleschi G (2015) Phosphate detection through a cost-effective carbon black nanoparticle-modified screen-printed electrode embedded in a continuous flow system. Environ Sci Technol 49:7934–7939

    Article  CAS  Google Scholar 

  65. Zhang JX, Bian YX, Liu D, Zhu ZW, Shao YH, Li MX (2019) Detection of phosphate in human blood based on a catalytic hydrogen wave at a molybdenum phosphide modified electrode. Anal Chem 91:14666–14671

    Article  CAS  Google Scholar 

  66. Lowenstein CJ, Dinerman JL, Snyder SH (1994) Nitric oxide-a physiological messenger. Ann Intern Med 120:227–237

    Article  CAS  Google Scholar 

  67. Szabo C (1996) Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull 41:131–141

    Article  CAS  Google Scholar 

  68. Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, Cabrales P, Fago A, Feelisch M, Ford PC, Freeman BA, Frenneaux M, Friedman J, Kelm M, Kevil CG, Kim-Shapiro DB, Kozlov AV, Lancaster JR, Lefer DJ, McColl K, McCurry K, Patel RP, Petersson J, Rassaf T, Reutov VP, Richter-Addo GB, Schechter A, Shiva S, Tsuchiya K, van Faassen EE, Webb AJ, Zuckerbraun BS, Zweier JL, Weitzberg E (2009) Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol 5:865–869

    Article  CAS  Google Scholar 

  69. Vitturi DA, Patel RP (2011) Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy. Free Radic Biol Med 51:805–812

    Article  CAS  Google Scholar 

  70. Pattillo CB, Bir S, Rajaram V, Kevil CG (2011) Inorganic nitrite and chronic tissue ischaemia: a novel therapeutic modality for peripheral vascular diseases. Cardiovasc Res 89:533–541

    Article  CAS  Google Scholar 

  71. Madasamy T, Pandiaraj M, Balamurugan M, Bhargava K, Sethy NK, Karunakaran C (2014) Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens Bioelectron 52:209–215

    Article  CAS  Google Scholar 

  72. Reiter S, Habermuller K, Schuhmann W (2001) A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films. Sensor Actuat B-Chem 79:150–156

    Article  CAS  Google Scholar 

  73. Cauthen CA, Lipinski MJ, Abbate A, Appleton D, Nusca A, Varma A, Goudreau E, Cowley MJ, Vetrovec GW (2008) Relation of blood urea nitrogen to long-term mortality in patients with heart failure. Am J Cardiol 101:1643–1647

    Article  CAS  Google Scholar 

  74. Manerba A, Lombardi C, Vizzardi E, Maiandi C, Milesi G, Bugatti S, Bettari L, Romeo A, Metra M, Cas LD (2010) Role of blood urea nitrogen variations in patients with chronic heart failure. Eur Heart J 31:1053–1054

    Google Scholar 

  75. Yang YA, Lin CH, Wei YC (2014) Thread-based microfluidic system for detection of rapid blood urea nitrogen in whole blood. Microfluid Nanofluid 16:887–894

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, K., Zhang, X., Xia, F. (2023). Electrochemical Biosensors for Ions Detection. In: Xia, F., Li, H., Li, S., Lou, X. (eds) Electrochemical Biosensors for Whole Blood Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-99-5644-9_3

Download citation

Publish with us

Policies and ethics