Skip to main content

Evolution of Wireless Communication Technology for V2X Assisted Autonomous Driving

  • Chapter
  • First Online:
Communication, Computation and Perception Technologies for Internet of Vehicles
  • 166 Accesses

Abstract

Autonomous driving envisages vehicles to perceive the environment through on-board sensors or through cooperative information exchange with other transport entities, such that human effort can be liberated and can help to foster an efficient, safe, smart and sustainable transportation system. Currently, there is a plethora of wireless communication technologies in Vehicle-to-Everything (V2X) assisted autonomous driving. Each wireless communication technology has features that make it potentially promising for V2X. This chapter discusses the use cases and requirements of V2X communications and sheds light on the pros and cons of the wireless communication technologies for V2X and presents standardization activities toward the realization of V2X communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3GPP:

Third Generation Partnership Project

5G:

5Th Generation Mobile Communication Technology

5GAA:

5G Automotive Association

8DPSK:

Differential 8-Phase Shift Keying

ARIB:

Association of Radio Industries and Businesses

ARQ:

Automatic Repeat-reQuest

BPSK:

Binary Phase-Shift Keying

BS:

Base Station

BSM:

Basic Service Message

C-V2X:

Cellular Vehicle-to-Everything

CA:

Carrier Aggregation

CAM:

Cooperative Awareness Message

CAV:

Connected Autonomous Vehicles

CEN:

European Committee for Standardization

CP:

Cyclic Prefix

CSMA/CA:

Carrier Sense Multiple Access with Collision Avoidance

D2D:

Device-to-Device

DENM:

Decentralized Environmental Notification Message

DFT:

Discrete Fourier Transform

DMRS:

DeModulation Reference Signal

DQPSK:

Differential Quadrature Phase Shift Keying

DSRC:

Dedicated Short-Range Communications

E-UTRAN:

Evolved Universal Terrestrial Radio Access Network

ECP:

Extended Cyclic Prefix

eMBMS:

Enhanced Multimedia Broadcast Multicast Service

eNodeB:

Evolved Node B

ETSI:

European Telecommunications Standards Institute

FCC:

Federal Communications Commission

FEC:

Forward Error Correcting

FM:

Frequency Modulation

FR1:

Frequency Range 1

FR2:

Frequency Range 2

GFSK:

Gaussian Frequency-Shift Keying

GLOSA:

Green Light Optimal Speed Advisory

GNSS:

Global Navigation Satellite System

GPS:

Global Positioning System

GSM:

Global System for Mobile Communication

IEEE:

Institute of Electrical and Electronics Engineers

IMU:

Inertial Measurement Unit

ISI:

Inter-Symbol Interference

ISM:

Industrial, Scientific and Medical

ISO:

International Standards Organization

ITS:

Intelligent Transportation Systems

ITS-S:

Intelligent Transportation Systems-Station

LiDAR:

Laser imaging, Detection, and Ranging

LoS:

Line-of-Sight

LTE:

Long Term Evolution

MAC:

Medium Access Control

MCS:

Modulation and Coding Scheme

MIMO:

Multiple-Input Multiple-Output

MNO:

Mobile Network Operators

MU-MIMO:

Multi-User Multiple-Input Multiple-Output

NCP:

Normal Cyclic Prefix

NLOS:

Non-Line-of-Sight

NR:

New Radio

O-QPSK:

Offset Quadrature Phase Shift Keying

OBU:

On Board Unit

ODD:

Operational Design Domain

OFDM:

Orthogonal Frequency Division Multiplexing

OFDMA:

Orthogonal Frequency Division Multiple Access

PANs:

Personal Area Networks

PHY:

Physical Layer

POS:

Personal Operating Space

ProSe:

Proximity Services

PSCCH:

Physical Sidelink Control Channel

PSFCH:

Physical Sidelink Feedback Channel

PSSCH:

Physical Sidelink Shared Channel

QAM:

Quadrature Amplitude Modulation

QoS:

Quality of Service

QPSK:

Differential Quadrature Phase Shift Keying

RB:

Resource Block

RDS:

Radio Data System

RFID:

Radio Frequency IDentification

RSU:

Road Side Unit

SA:

System Aspects

SAE:

Society of Automotive Engineers International

SAP:

Service Access Point

SC-FDMA:

Single-Carrier Frequency-Division Multiple Access

SCI:

Sidelink Control Information

SCS:

Subcarrier Spacing

SDO:

Standard Development Organizations

SLRs:

Service Level Requirements

SPS:

SemiPersistent Scheduling

TB:

Transport Block

TCMA:

Tiered Contention Multiple Access

UHF:

Ultra-High Frequency

UMTS:

Universal Mobile Telecommunication Systems

V2I:

Vehicle-to-Infrastructure

V2N:

Vehicle-to-Network

V2P:

Vehicle-to-Pedestrian

V2V:

Vehicle-to-Vehicle

V2X:

Vehicle-to-Everything

VANET:

Vehicular Ad Hoc Network

VRU:

Vulnerable Road User

WAVE:

Wireless Access in Vehicular Environments

Wi-Fi:

Wireless Fidelity

References

  1. P. Bucsky, Modal share changes due to COVID-19: the case of Budapest. Transp. Res. Interdisc. Perspect. 8 (2020)

    Google Scholar 

  2. C. Eisenmann, C. Nobis, V. Kolarova, B. Lenz, C. Winkler, Transport mode use during the COVID-19 lockdown period in Germany: the car became more important, public transport lost ground. Transp. Policy 103, 60–67 (2021)

    Article  Google Scholar 

  3. M.J. Beck, D.A. Hensher, E. Wei, Slowly coming out of COVID-19 restrictions in Australia: implications for working from home and commuting trips by car and public transport. J. Transp. Geogr. 88 (2020)

    Google Scholar 

  4. J.A. Vallejo-Borda, R. Giesen, P. Basnak, J.P. Reyes, B.M. Lira, M.J. Beck, D.A. Hensher, J.D.D. Ortúzar, Characterising public transport shifting to active and private modes in South American capitals during the COVID-19 pandemic. Transp. Res. Part A: Policy Pract. 164, 186–205 (2022)

    Google Scholar 

  5. J.D. Vos, The effect of COVID-19 and subsequent social distancing on travel behavior. Transp. Res. Interdisc. Perspect 5 (2020)

    Google Scholar 

  6. M.J. Beck, D.A. Hensher, Insights into the impact of COVID-19 on household travel and activities in Australia—the early days under restrictions. Transp. Policy 96, 76–93 (2020)

    Article  Google Scholar 

  7. D. Tarasi, T. Daras, S. Tournaki, T. Tsoutsos, Transportation in the Mediterranean during the COVID-19 pandemic era. Glob. Transitions 3, 55–71 (2021)

    Article  Google Scholar 

  8. L. Butler, T. Yigitcanlar, A. Paz, Smart urban mobility innovations: a comprehensive review and evaluation. IEEE Access 8, 196034–196049 (2020)

    Article  Google Scholar 

  9. F. Golbabaei, T. Yigitcanlar, J. Bunker, The role of shared autonomous vehicle systems in delivering smart urban mobility: a systematic review of the literature. Int. J. Sustain. Transp. 15(10), 731–748 (2021)

    Article  Google Scholar 

  10. L. Zhu, F.R. Yu, Y. Wang, B. Ning, T. Tang, Big data analytics in intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 20(1), 383–398 (2019)

    Article  Google Scholar 

  11. M. Yu, Construction of regional intelligent transportation system in smart city road network via 5G network. IEEE Trans. Intell. Transp. Syst. Early Access

    Google Scholar 

  12. M.B. Mollah et al., Blockchain for the internet of vehicles towards intelligent transportation systems: a survey. IEEE Internet Things J. 8(6), 4157–4185 (2021)

    Article  Google Scholar 

  13. A. Haydari, Y. Yılmaz, Deep reinforcement learning for intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 23(1), 11–32 (2022)

    Article  Google Scholar 

  14. Z. Lv, R. Lou, A.K. Singh, AI empowered communication systems for intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 22(7), 4579–4587 (2021)

    Article  Google Scholar 

  15. P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, A. Mouzakitis, A taxonomy and survey of edge cloud computing for intelligent transportation systems and connected vehicles. IEEE Trans. Intell. Transp. Syst. 23(7), 6206–6221 (2022)

    Article  Google Scholar 

  16. C.Y.D. Yang, K. Ozbay, X. Ban, Developments in connected and automated vehicles. J. Intell. Transp. Syst. 21(4), 251–254 (2017)

    Article  Google Scholar 

  17. E. Yurtsever, J. Lambert, A. Carballo, K. Takeda, A survey of autonomous driving: common practices and emerging technologies. IEEE Access 8, 58443–58469 (2020)

    Article  Google Scholar 

  18. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, SAE Standard J3016, SAE International (2018)

    Google Scholar 

  19. J. Wang, J. Liu, N. Kato, Networking and communications in autonomous driving: a survey. In: IEEE Commun. Surv. Tutor. 21(2), 1243–1274 (2019)

    Google Scholar 

  20. Z. MacHardy, A. Khan, K. Obana, S. Iwashina, V2X access technologies: regulation, research, and remaining challenges. IEEE Commun. Surv. Tutor. 20(3), 1858–1877 (2018)

    Google Scholar 

  21. M. Annoni, B. Williams, The history of vehicular networks. Veh. Ad Hoc Netw. 3–21 (2015)

    Google Scholar 

  22. H. Flurscheim, Radio warning system for use on vehicles. US Patent 1612427 (1926)

    Google Scholar 

  23. D. Kopitz, B. Marks, RDS: The Radio Data System (Artech House, 1999)

    Google Scholar 

  24. G. Naik, B. Choudhury, J.-M. Park, IEEE 802.11bd & 5G NR V2X: evolution of radio access technologies for V2X communications. IEEE Access 7, 70169–70184 (2019)

    Article  Google Scholar 

  25. K. Abboud, H.A. Omar, W. Zhuang, Interworking of DSRC and cellular network technologies for V2X communications: a survey. IEEE Trans. Veh. Technol. 65(12), 9457–9470 (2016)

    Article  Google Scholar 

  26. M. Boban, A. Kousaridas, K. Manolakis, J. Eichinger, W. Xu, Connected roads of the future: use cases, requirements, and design considerations for vehicle-to-everything communications. IEEE Veh. Technol. Mag. 13(3), 110–123 (2018)

    Article  Google Scholar 

  27. M.H.C. Garcia et al., A tutorial on 5G NR V2X communications. IEEE Commun. Surv. Tutor. 23(3), 1972–2026 (2021)

    Google Scholar 

  28. Study on LTE support for Vehicle to Everything (V2X) services, 3GPP TR 22.885 (2015)

    Google Scholar 

  29. Service Requirements for Enhanced V2X Scenarios (3GPP TS 22.186, 2022)

    Google Scholar 

  30. C-V2X Use Cases: Methodology, Examples and Service Level Requirements (5GAA White Paper, 2019)

    Google Scholar 

  31. C-V2X Use Cases Volume II: Examples and Service Level Requirements (5GAA White Paper, 2020)

    Google Scholar 

  32. P. Murphy, E. Welsh, J.P. Frantz, Using Bluetooth for short-term ad hoc connections between moving vehicles: a feasibility study, in Proceedings of the IEEE 55th Vehicular Technology Conference (vol. 1, 2002), pp. 414–418

    Google Scholar 

  33. T. Zheng, S. Wang, A.E. Kamel, Bluetooth communication reliability of mobile vehicles, in Proceedings of the International Conference on Fluid Power and Mechatronics (2011), pp. 873–877

    Google Scholar 

  34. S. Gillijns, M.L.R. de Arbulo Gubía, M. Engels, A fast simulation approach to assess the influence of bluetooth communication on distance control between vehicles, in Proceedings of the IEEE 72nd Vehicular Technology Conference (2010), pp. 1–5

    Google Scholar 

  35. I. C. S. L. M. S. Committee et al., Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE Standard 902.11-1997 (1997)

    Google Scholar 

  36. A. Maimaris, G. Papageorgiou, A review of Intelligent Transportation Systems from a communications technology perspective, in Proceedings of the IEEE International Conference on Intelligent Transportation Systems (ITSC) (2016), pp. 54–59

    Google Scholar 

  37. J.E. Aasri, M. Arioua, A. Zakriti, I. Ez-zazi, Modulator performance measurement in wireless sensor transmission chain, in Proceedings of the International Conference on Wireless Networks and Mobile Communications (WINCOM) (2017), pp. 1–5

    Google Scholar 

  38. R.A. Gheorghiu, M. Minea, Energy-efficient solution for vehicle prioritisation employing ZigBee V2I communications, in Proceedings of the International Conference on Applied and Theoretical Electricity (ICATE) (2016), pp. 1–6

    Google Scholar 

  39. Y. Lei, J. Wu, Study of applying ZigBee technology into forward collision warning system (FCWS) under low-speed circumstance, in Proceedings of the 25th Wireless and Optical Communication Conference (WOCC) (2016), pp. 1–4

    Google Scholar 

  40. K. Zhang, L. Zhang, F. Lu, Y. Zhao, Distance measurement algorithm for freeway vehicles based on Zigbee technology, in Proceedings of the IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (2017), pp. 2007–2010

    Google Scholar 

  41. C. Dong, X. Chen, H. Dong, K. Yang, J. Guo, Y. Bai, Research on intelligent vehicle infrastructure cooperative system based on Zigbee, in Proceedings of the International Conference on Transportation Information and Safety (ICTIS) (2019), pp. 1337–1343

    Google Scholar 

  42. W. Xu, H.A. Omar, W. Zhuang, X.S. Shen, Delay analysis of in-vehicle internet access via on-road WiFi access points. IEEE Access 5, 2736–2746 (2017)

    Article  Google Scholar 

  43. W. Xu, W. Shi, F. Lyu, H. Zhou, N. Cheng, X. Shen, Throughput analysis of vehicular internet access via roadside WiFi hotspot. IEEE Trans. Veh. Technol. 68(4), 3980–3991 (2019)

    Article  Google Scholar 

  44. N. Cheng, N. Lu, N. Zhang, X.S. Shen, J.W. Mark, Opportunistic WiFi offloading in vehicular environment: a queueing analysis, in Proceedings of the IEEE Global Communications Conference (2014), 211–216

    Google Scholar 

  45. D. Han, W. Chen, Y. Fang, Opportunistic WiFi offloading in a vehicular environment: an MDP approach, in Proceedings of the ICC IEEE International Conference on Communications (ICC) (2020), pp. 1–6

    Google Scholar 

  46. S. Goel, T. Imielinski, K. Ozbay, Ascertaining viability of WiFi based vehicle-to-vehicle network for traffic information dissemination, in Proceedings of the IEEE Conference on Intelligent Transportation Systems (2004), pp. 1086–1091

    Google Scholar 

  47. H. Viittala, S. Soderi, J. Saloranta, M. Hamalainen, J. Iinatti, An experimental evaluation of WiFi-based vehicle-to-vehicle (V2V) communication in a tunnel, in Proceedings of the IEEE Vehicular Technology Conference (VTC Spring) (2013), pp. 1–5

    Google Scholar 

  48. H. Zhou, W. Xu, J. Chen, W. Wang, Evolutionary V2X technologies toward the internet of vehicles: challenges and opportunities. Proc. IEEE 108(2), 308–323 (2020)

    Article  Google Scholar 

  49. J.B. Kenney, Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  50. R. Molina-Masegosa, J. Gozalvez, LTE-V for sidelink 5G V2X vehicular communications: a new 5G technology for short-range vehicle-to-everything communications. IEEE Veh. Technol. Mag. 12(4), 30–39 (2017)

    Article  Google Scholar 

  51. NR; Base Station (BS) radio transmission and reception, 3GPP TS 38.104, (2020)

    Google Scholar 

  52. S.-Y. Lien et al., 3GPP NR sidelink transmissions toward 5G V2X. IEEE Access 8, 35368–35382 (2020)

    Article  Google Scholar 

  53. S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, H.-Y. Wei, 5G new radio: waveform, frame structure, multiple access, and initial access. IEEE Commun. Mag. 55(6), 64–71 (2017)

    Article  Google Scholar 

  54. NR; Physical channels and modulation, 3GPP TS 38.211 (2020)

    Google Scholar 

  55. S. Ahmadi, 5G NR: Architecture, Technology, Implementation, and Operation of 3GPP New Radio Standards (Academic Press, 2019)

    Google Scholar 

  56. Study on NR Vehicle-to-Everything (V2X), (Release 16), V16.0.0: 3GPP TR 38.885 (2019)

    Google Scholar 

  57. M. Harounabadi, D.M. Soleymani, S. Bhadauria, M. Leyh, E. Roth-Mandutz, V2X in 3GPP standardization: NR sidelink in release-16 and beyond. IEEE Commun. Standards Mag. 5(1), 12–21 (2021)

    Article  Google Scholar 

  58. H. Bagheri et al., 5G NR-V2X: toward connected and cooperative autonomous driving. IEEE Commun. Standards Mag. 5(1), 48–54 (2021)

    Article  Google Scholar 

  59. Dedicated Short Range Communications (DSRC) Service, https://www.fcc.gov/wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-service

  60. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 12), V12.10.0, 3GPP TS 36.300 (2016)

    Google Scholar 

  61. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 13), V13.14.0, 3GPP TS 36.300 (2020)

    Google Scholar 

  62. Study on LTE-based V2X Services; (Release 14), V14.0.0: 3GPP TR 36.885 (2016)

    Google Scholar 

  63. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation, (Release 14), V14.15.0: 3GPP TS 36.211 (2020)

    Google Scholar 

  64. Study on enhancement of 3GPP Support for 5G V2X Services (Release 15), V15.3.0: 3GPP TR 22.886 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongdong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, K., Zhu, Y. (2023). Evolution of Wireless Communication Technology for V2X Assisted Autonomous Driving. In: Zhu, Y., Cao, Y., Hua, W., Xu, L. (eds) Communication, Computation and Perception Technologies for Internet of Vehicles. Springer, Singapore. https://doi.org/10.1007/978-981-99-5439-1_3

Download citation

Publish with us

Policies and ethics