Skip to main content

Modeling Microscopic Traffic Behaviors for Connected and Autonomous Vehicles

  • Chapter
  • First Online:
Communication, Computation and Perception Technologies for Internet of Vehicles
  • 196 Accesses

Abstract

Autonomous vehicles (AVs) will transform urban mobility into mixed traffic consisting of AVs and human-driven vehicles (HVs). In this chapter, we first review recent modeling works on mixed traffic flow and summarize research gaps. Then a stochastic car-following model is proposed to model the car-following behavior of AVs and HVs. This chapter also analyses the safety of mixed-traffic flow by considering the impact of AVs on their followers’ car-following behaviours. This model successfully explains different types of traffic instabilities that is observed in real-world; second, we conduct a series of numerical simulations showing that AVs can improve traffic safety without decreasing traffic throughput. The sensitivity test further reveals that traffic safety risk decreases with the growth of the AV penetration rate (PR), as is indicated by the decreased average standard deviation (SD) of vehicle speeds and time integrated time-to-collision (TIT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AVs:

Autonomous Vehicles

HVs:

Human-driven vehicles

SD:

Standard deviation

TIT:

Time integrated time-to-collision

PR:

Penetration rate

References

  1. G. Gunter, C. Janssen, W. Barbour, R. Stern, D. Work, Model- based string stability of adaptive cruise control systems using field data. IEEE Transa. Intell. Veh. 5(1), 90–99 (2020)

    Article  Google Scholar 

  2. J. Bilbao-Ubillos, The costs of urban congestion: estimation of welfare losses arising from congestion on cross-town link roads. Transp. Res. Part A: Policy Pract. 42(8), 1098–1108 (2008)

    Google Scholar 

  3. B. Van Arem, C.J. Van Driel, R. Visser, The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans. Intell. Transp. Syst. 7(4), 429–436 (2006)

    Article  Google Scholar 

  4. A. Talebpour, H.S. Mahmassani, Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C: Emerging Technol. 71, 143–163 (2016)

    Article  Google Scholar 

  5. H.S. Mahmassani, 50th anniversary invited article—autonomous vehicles and connected vehicle systems: flow and operations considerations. Transp. Sci. 50(4), 1140–1162 (2016)

    Article  Google Scholar 

  6. D. Chen, S. Ahn, M. Chitturi, D. A. Noyce, Towards vehicle automation: roadway capacity formulation for traffic mixed with regular and automated vehicles. Transp. Res. Part B: Methodol. 100(C), 196–221 (2017)

    Google Scholar 

  7. D. Chen, A. Srivastava, S. Ahn, T. Li, Traffic dynamics under speed disturbance in mixed traffic with automated and non-automated vehicles. Transp. Res. Procedia 38, 709–729 (2019), J. Transp. Traffic Theory

    Google Scholar 

  8. J. Zhou, F. Zhu, Modeling the fundamental diagram of mixed human-driven and connected automated vehicles. Transp. Res. Part C: Emerging Technol. 115, 102614 (2020)

    Article  Google Scholar 

  9. X. Li, Trade-off between safety, mobility and stability in automated vehicle following control: an analytical method. Research Gate Preprint, 07 (2020)

    Google Scholar 

  10. X. Shi, X. Li, Empirical study on car-following characteristics of commercial automated vehicles with different headway settings. Transp. Res. Part C: Emerging Technol. 128, 103134 (2021)

    Article  Google Scholar 

  11. L.A. Pipes, An operational analysis of traffic dynamics. J. Appl. Phys. 24(3), 274–281 (1953)

    Article  MathSciNet  Google Scholar 

  12. R.E. Chandler, R. Herman, E.W. Montroll, Traffic dynamics: studies in car following. Oper. Res. 6(2), 165–184 (1958)

    Article  MathSciNet  Google Scholar 

  13. R. Herman, E.W. Montroll, R.B. Potts, R.W. Rothery, Traffic dynamics: analysis of stability in car following. Oper. Res. 7(1), 86–106 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  14. D.C. Gazis, R. Herman, R.W. Rothery, Nonlinear follow-the- leader models of traffic flow. Oper. Res. 9(4), 545–567 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Michaels, Perceptual factors in car following, in Proceedings of the 2nd International Symposium on the Theory of Road Traffic Flow (1963), pp. 44–59

    Google Scholar 

  16. M. Treiber, A. Hennecke, D. Helbing, Congested Traffic States in Empirical Observations and Microscopic Simulations (2000), pp. 1805–1824

    Google Scholar 

  17. G.F. Newell, A simplified car-following theory: a lower order model. Transp. Res. Part B 36(3), 195–205 (2002)

    Article  Google Scholar 

  18. M. Dougherty, A review of neural networks applied to transport. Transp. Res. Part C: Emerging Technol. 3(4), 247–260 (1995)

    Article  Google Scholar 

  19. R. Wiedemann, U. Reiter, Microscopic traffic simulation: the simulation system MISSION, background and actual state. Project ICARUS (V1052) Final Report, vol. 2 (1992)

    Google Scholar 

  20. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 51(2), 1035–1042 (1995)

    Article  Google Scholar 

  21. R. Jiang, Q. Wu, Z. Zhu, Full velocity difference model for a car-following theory. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(1), 1–4 (2001)

    Article  Google Scholar 

  22. J.A. Laval, L. Leclercq, A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Phil. Trans. R. Soc. A 368(1928), 4519–4541 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Chen, J.A. Laval, S. Ahn, Z. Zheng, Microscopic traffic hysteresis in traffic oscillations: a behavioral perspective. Transp. Res. Part B 46(10), 1440–1453 (2012)

    Article  Google Scholar 

  24. M. Mauch, M.J. Cassidy, Freeway traffic oscillations: observations and predictions, in 15th International Symposium on Transportation and Traffic Theory, ed. by M. Taylor (Pergamon-Elsevier, Oxford, U.K., 2002)

    Google Scholar 

  25. Z. Zheng, S. Ahn, D. Chen, J. Laval, Applications of wavelet transform for analysis of freeway traffic: bottlenecks, transient traffic, and traffic oscillations. Transp. Res. Part B: Methodol. 45(2), 372–384 (2011)

    Article  Google Scholar 

  26. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-I. Tadaki, S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10, 033001 (2008)

    Article  Google Scholar 

  27. R. Wilson, J. Ward, Car-following models: fifty years of linear stability analysis - a mathematical perspective. Transp. Plan. Technol. 34(1), 3–18 (2011)

    Article  Google Scholar 

  28. M. Treiber, A. Kesting, Validation of traffic flow models with respect to the spatiotemporal evolution of congested traffic patterns. Transp. Res. Part C: Emerging Technol. 21(1), 31–41 (2012)

    Article  Google Scholar 

  29. J.A. Laval, C.S. Toth, Y. Zhou, A parsimonious model for the formation of oscillations in car-following models. Transp. Res. Part B: Methodol. 70, 228–238 (2014)

    Article  Google Scholar 

  30. F.L. Hall, K. Agyemang-Duah, Freeway capacity drop and the definition of capacity. Transp. Res. Rec. 1320, 91–98 (1991)

    Google Scholar 

  31. L. Leclercq, J.A. Laval, N. Chiabaut, Capacity drops at merges: an endogenous model. Procedia Soc. Behav. Sci. 17(0), 12–26 (2011), Papers selected for the 19th International Symposium on Transportation and Traffic Theory

    Google Scholar 

  32. D. Chen, S. Ahn, Capacity-drop at extended bottlenecks: merge, diverge, and weave. Transp. Res. Part B: Methodol. 108, 1–20 (2018)

    Article  Google Scholar 

  33. S. Oh, H. Yeo, Impact of stop-and-go waves and lane changes on discharge rate in recovery flow. Transp. Res. Part B: Methodol. 77, 88–102 (2015)

    Article  Google Scholar 

  34. G. Wong, S. Wong, A multi-class traffic flow model: an extension of LWR model with heterogeneous drivers. Transp. Res. Part A 36, 827–841 (2002)

    Google Scholar 

  35. K. Yuan, J. Laval, V.L. Knoop, R. Jiang, S. Hoogendoorn, A geometric Brownian motion car-following model: towards a better understanding of capacity drop. Transp. B (2018)

    Google Scholar 

  36. T. Xu, J. Laval, Parameter estimation of a stochastic microscopic car-following model, in 97th Annual Meeting of Transportation Research Board (Washington, 2018)

    Google Scholar 

  37. R. Jiang, M.-B. Hu, H. M. Zhang, Z.-Y. Gao, B. Jia, Q.-S. Wu, B. Wang, M. Yang, Traffic experiment reveals the nature of car-following. PLoS ONE 9(4), 1–9 (2014)

    Google Scholar 

  38. J. Tian, R. Jiang, B. Jia, Z. Gao, S. Ma, Empirical analysis and simulation of the concave growth pattern of traffic oscillations. Transp. Res. Part B: Methodol. 93, 338–354 (2016)

    Article  Google Scholar 

  39. M. Treiber, A. Kesting, The intelligent driver model with stochasticity -new insights into traffic flow oscillations. Transp. Res. Procedia 23(Supp C), 174–187 (2017), Papers Selected for the 22nd International Symposium on Transportation and Traffic Theory, Chicago, Illinois, USA, 24–26 July, 2017

    Google Scholar 

  40. S. Nadarajah, S. Kotz, Exact distribution of the max/min of two Gaussian random variables, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2008), pp. 210–212

    Google Scholar 

  41. S. Ahn, M. Cassidy, J.A. Laval, Verification of a simplified car- following theory. Transp. Res. Part B 38(5), 431–440 (2003)

    Article  Google Scholar 

  42. S. Ding, X. Chen, Z. Fu, F. Peng, An extended car-following model in connected and autonomous vehicle environment: perspective from the cooperation between drivers. J. Adv. Transp. 2021, 1–17 (2021)

    Google Scholar 

  43. T. Li, D. Chen, H. Zhou, J. Laval, Y. Xie, Car-following behavior characteristics of adaptive cruise control vehicles based on empirical experiments. Transp. Res. Part B: Methodol. 147, 67–91 (2021)

    Article  Google Scholar 

  44. T. Xu, J. Laval, Analysis of a two-regime stochastic car-following model: explaining capacity drop and oscillation instabilities. Transp. Res. Rec. 2673(10), 610–619 (2019)

    Article  Google Scholar 

  45. T. Xu, J. Laval, Statistical inference for two-regime stochastic car-following models. Transp. Res. Part B 134, 210–228 (2020)

    Article  Google Scholar 

  46. T. Xu, J. Laval, Driver reactions to uphill grades: inference from a stochastic car-following model. Transp. Res. Rec. 2674(11), 343–351 (2020)

    Article  Google Scholar 

  47. Y. Rahmati, M.K. Hosseini, A. Talebpour, B. Swain, C. Nelson, Influence of autonomous vehicles on car-following behavior of human drivers. Transp. Res. Rec. 2673(12), 367–379 (2019)

    Article  Google Scholar 

  48. R.E. Stern, S. Cui, M.L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton, H. Pohlmann, F. Wu, B. Piccoli, et al., Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments. Transp. Res. Part C: Emerging Technol. 89, 205–221

    Google Scholar 

  49. M.M. Minderhoud, P.H. Bovy, Extended time-to-collision measures for road traffic safety assessment. Accid. Anal. Prev. 33(1), 89–97 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongdong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, T., Zhu, Y. (2023). Modeling Microscopic Traffic Behaviors for Connected and Autonomous Vehicles. In: Zhu, Y., Cao, Y., Hua, W., Xu, L. (eds) Communication, Computation and Perception Technologies for Internet of Vehicles. Springer, Singapore. https://doi.org/10.1007/978-981-99-5439-1_1

Download citation

Publish with us

Policies and ethics