Skip to main content

Nanoemulsions from Essential Oils: Preparation, Characterization, and Their Applications

  • Chapter
  • First Online:
Current Trends in Green Nano-emulsions

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 239 Accesses

Abstract

Nanoemulsion technology has emerged as the most promising delivery channel for lipophilic components such as nutraceuticals, drugs, flavors, antioxidants, and antimicrobial agents. Nanoemulsions of essential oils commonly involve two main preparation methods. Preparation of nanoemulsions of essential oils is based on either non-spontaneous (high-energy) or spontaneous (low-energy) processes. Several studies reported that ultrasonic emulsification produced the smallest droplet sizes of nanoemulsions of essential oils. It is documented as an efficient and fast method of preparation of nanoemulsions. The potential functionality of nanoemulsions is because of the higher activity property of their surface area. Droplet sizes, zeta potentials, polydispersity index, viscosity, stability, and morphologies of particles are the characteristic properties of nanoemulsions. The characteristics and properties of nanoemulsions of essential oils depend not only on the components but also on the preparation methods. The nanoemulsions preparation method has several advantages over conventional emulsion techniques. Nanoemulsions are suitable formulations to serve as an additive in clear drinks and beverages due to their good optical transparent solution. The kinetic stability of colloidal systems is also another advantage of nanoemulsions of essential oils. This book chapter provides insight into the concise preparation, characterizations, and applications of nanoemulsions from essential oils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali B, Jamil A, Majeed U, Khan QF, Iqbal KJ, Shoemaker CF, Zhong F (2015) Essential oil encapsulations: uses, procedures, and trends. RSC Adv. https://doi.org/10.1039/C5RA06556A

    Article  Google Scholar 

  2. Gonfa YH, Gelagle AA, Hailegnaw B, Kabeto SA, Workeneh GA, Tessema FB, Tadesse MG, Wabaidur SM, Dahlous KA, Abou Fayssal S, Kumar P, Adelodun B, Bachheti A, Bachheti RK (2023) Optimization, characterization, and biological applications of silver nanoparticles synthesized using essential oil of aerial part of Laggera tomentosa. Sustainability 15(1):797

    Article  CAS  Google Scholar 

  3. Gonfa YH, Tessema FB, Gelagle AA, Getnet SD, Tadesse MG, Bachheti A, Bachheti RK (2022) Chemical compositions of essential oil from aerial parts of Cyclospermum leptophyllum and its application as antibacterial activity against some food spoilage bacteria. J Chem. https://doi.org/10.1155/2022/5426050

    Article  Google Scholar 

  4. Hashtjin AM, Abbasi S (2015) Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocolloids 44:40–48. https://doi.org/10.1016/j.foodhyd.2014.08.017

    Article  CAS  Google Scholar 

  5. Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF (2020) An overview of micro-and nanoemulsions as vehicles for essential oils: formulation, preparation and stability. Nanomaterials 10(1):1–24. https://doi.org/10.3390/nano10010135

    Article  CAS  Google Scholar 

  6. Xue J (2015) Essential oil nanoemulsions prepared with natural emulsifiers for improved food safety

    Google Scholar 

  7. Komaiko JS, Mcclements DJ (2016) Formation of food-grade nanoemulsions using low-energy preparation methods: a review of available methods. Compr Rev Food Sci Food Saf 15:331–352. https://doi.org/10.1111/1541-4337.12189

    Article  CAS  PubMed  Google Scholar 

  8. Long Y, Huang W, Wang Q, Yang G (2020) Green synthesis of garlic oil nanoemulsion using ultrasonication technique and its mechanism of antifungal action against Penicillium italicum. Ultrason Sonochem 64:104970. https://doi.org/10.1016/j.ultsonch.2020.104970

    Article  CAS  PubMed  Google Scholar 

  9. Guilherme I, Sen K, Rinaldi C (2020) Effect of sodium alginate and different types of oil on the physical properties of ultrasound-assisted nanoemulsions. Chem Eng Process 153:1–8. https://doi.org/10.1016/j.cep.2020.107942

    Article  CAS  Google Scholar 

  10. Koshani R, Mahdi S (2019) Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Coll Interface Sci 270:123–146. https://doi.org/10.1016/j.cis.2019.06.005

    Article  CAS  Google Scholar 

  11. Taha A, Ahmed E, Ismaiel A, Ashokkumar M, Xu X, Pan S, Hu H (2020) Ultrasonic emulsification: an overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2020.09.024

    Article  Google Scholar 

  12. Dasgupta N, Ranjan S (2018) An introduction to food grade nanoemulsions. Springer Nature Singapore Pte Ltd

    Google Scholar 

  13. Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13:245–251. https://doi.org/10.1016/j.cocis.2008.01.005

    Article  CAS  Google Scholar 

  14. Kumar H, Kumar V (2018) Ultrasonication assisted formation and stability of water-in-oil nanoemulsions: optimization and ternary diagram analysis. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2018.07.022

    Article  PubMed  Google Scholar 

  15. Gharibzahedi SMT, Rostami H, Yousefi S (2015) Formulation design and physicochemical stability characterization of nanoemulsions of Nettle (Urtica dioica) essential oil using a model-based methodology. J Food Process Preserv 39(6):2947–2958. https://doi.org/10.1111/jfpp.12546

    Article  CAS  Google Scholar 

  16. Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O (2015) Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids 43:547–556. https://doi.org/10.1016/j.foodhyd.2014.07.012

    Article  CAS  Google Scholar 

  17. Gupta M, Gupta D (2022) Essential oils: as potential larvicides. J Drug Delivery Ther 12(3):193–201

    Article  CAS  Google Scholar 

  18. Pathania R, Khan H, Kaushik R, Khan MA (2018) Essential oil nanoemulsions and their antimicrobial and food applications. Curr Res Nutr Food Sci 6(3):626–643. https://doi.org/10.12944/CRNFSJ.6.3.05

  19. Zhang S, Zhang M, Fang Z, Liu Y (2017) Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. Food Sci Technol 75:316–322. https://doi.org/10.1016/j.lwt.2016.08.046

    Article  CAS  Google Scholar 

  20. Rao J, Chen B, McClements DJ (2019) Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action. Annu Rev Food Sci Technol 10:365–387. https://doi.org/10.1146/annurev-food-032818-121727

    Article  CAS  PubMed  Google Scholar 

  21. Singh N, Jaipur F (2017) An overview of prospective application of nanoemulsions in food stuffs and food packaging. ASIO J Microbiol Food Sci Biotechnol Innov 1:1–7

    Google Scholar 

  22. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC (2014) Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid-Based Complement Altern Med 2014:1–15

    Google Scholar 

  23. Safaya M, Rotliwala YC (2019) Nanoemulsions: a review on low energy formulation methods, characterization, applications, and optimization technique. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2019.11.267

    Article  Google Scholar 

  24. Deepika, Chaudhari AK, Singh A, Das S, Dubey NK (2021) Nanoencapsulated Petroselinum crispum essential oil: characterization and practical efficacy against fungal and aflatoxin contamination of stored chia seeds. Food Biosci 42:101117. https://doi.org/10.1016/j.fbio.2021.101117

  25. Sugumar S, Singh S (2016) Nanoemulsion of orange oil with non ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast. Appl Nanosci. https://doi.org/10.1007/s13204-015-0412-z

    Article  Google Scholar 

  26. Vinaya KN, John AM, Mangsatabam M (2021) Ultrasound-assisted synthesis and characterization of sesame oil based nanoemulsion. IOP Conf Ser: Mater Sci Eng 1114:1–9. https://doi.org/10.1088/1757-899X/1114/1/012085

    Article  Google Scholar 

  27. Jadhav AJ, Holkar CR, Karekar SE, Pinjari DV, Pandit AB (2014) Ultrasound assisted manufacturing of paraffin wax nanoemulsions: process optimization. In: Ultrasonics sonochemistry. Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2014.10.024

  28. Raviadaran R, Han M, Manickam S, Chandran D (2018) Ultrasound-assisted water-in-palm oil nano-emulsion: influence of polyglycerol polyricinoleate and NaCl on its stability. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2018.12.012

    Article  PubMed  Google Scholar 

  29. Mei Z, Xu J, Sun D (2011) O/W nano-emulsions with tunable PIT induced by inorganic salts. Colloids Surf, A 375(1–3):102–108. https://doi.org/10.1016/j.colsurfa.2010.11.069

    Article  CAS  Google Scholar 

  30. Espitia PJP, Fuenmayor CA, Otoni CG (2019) Nanoemulsions: synthesis, characterization, and application in bio-based active food packaging. Compr Rev Food Sci Food Saf 18(1):264–285. https://doi.org/10.1111/1541-4337.12405

    Article  CAS  PubMed  Google Scholar 

  31. Nuchuchua O, Sakulku U, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. AAPS Pharm Sci Tech 10(4):1234–1242. https://doi.org/10.1208/s12249-009-9323-1

    Article  CAS  Google Scholar 

  32. Gadhave A (2014) Nanoemulsion-formation, stability and applications nanoemulsions: formation, stability and applications. Int J Res Sci Adv Technol 2(3):38–43

    Google Scholar 

  33. Gündel S, da S, de Godoi SN, Santos RCV, da Silva JT, Leite LB, de M, Amaral AC, Ourique AF (2020) In vivo antifungal activity of nanoemulsions containing eucalyptus or lemongrass essential oils in murine model of vulvovaginal candidiasis. J Drug Delivery Sci Technol 57:101762. https://doi.org/10.1016/j.jddst.2020.101762

  34. Jin W, Xu W, Liang H, Li Y, Liu S, Li B (2016) Nanoemulsions for food: properties, production, characterization, and applications. In: Emulsions. Elsevier Inc. https://doi.org/10.1016/b978-0-12-804306-6.00001-5

  35. Besseling R, Arribas-Bueno R, van Tuijn R, Gerich A (2021). Realtime droplet size monitoring of nano-emulsions during white paper realtime droplet size monitoring of nano-emulsions during high pressure. Inprocess-LSP 1–11. https://doi.org/10.13140/RG.2.2.30640.28166

  36. Silva EK, Rosa MTMG, Meireles MAA (2015) Ultrasound-assisted formation of emulsions stabilized by biopolymers. Curr Opin Food Sci 5:50–59. https://doi.org/10.1016/j.cofs.2015.08.007

    Article  Google Scholar 

  37. Liu T, Gao Z, Zhong W, Fu F, Li G, Guo J, Shan Y (2022) Preparation, characterization, and antioxidant activity of nanoemulsions incorporating lemon essential oil. Antioxidants 11(4):1–13. https://doi.org/10.3390/antiox11040650

    Article  CAS  Google Scholar 

  38. Ghadetaj A, Almasi H, Mehryar L (2018) Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food Packaging Shelf Life 16:31–40. https://doi.org/10.1016/j.fpsl.2018.01.012

  39. Nejadmansouri M, Mohammad S, Hosseini H, Niakosari M, Yousefi GH, Golmakani MT (2016) Physicochemical properties and storage stability of ultrasound-mediated WPI-stabilized fish oil nanoemulsions. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2016.07.011

    Article  Google Scholar 

  40. Shamsara O, Mahdi S, Muhidinov ZK (2017) Fabrication, characterization and stability of oil in water nano-emulsions produced by apricot gum-pectin complexes. Int J Biol Macromol 103:1285–1293. https://doi.org/10.1016/j.ijbiomac.2017.05.164

    Article  CAS  PubMed  Google Scholar 

  41. Xu T, Gao CC, Feng X, Wu D, Meng L, Cheng W, Zhang Y, Tang X (2020) Characterization of chitosan based polyelectrolyte films incorporated with OSA-modified gum arabic-stabilized cinnamon essential oil emulsions. Int J Biol Macromol 150:362–370. https://doi.org/10.1016/j.ijbiomac.2020.02.108

    Article  CAS  PubMed  Google Scholar 

  42. Badr MM, Badawy MEI, Taktak NEM (2021) Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. J Drug Delivery Sci Technol 65:102732. https://doi.org/10.1016/j.jddst.2021.102732

    Article  CAS  Google Scholar 

  43. Jesser E, Yeguerman C, Gili V, Santillan G, Murray AP, Domini C, Werdin-González JO (2020) Optimization and characterization of essential oil nanoemulsions using ultrasound for new ecofriendly insecticides. ACS Sustain Chem Eng 8(21):7981–7992. https://doi.org/10.1021/acssuschemeng.0c02224

    Article  CAS  Google Scholar 

  44. Carpenter J, Saharan VK (2017) Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: effect of process parameters and their optimization. Ultrason Sonochem 35:422–430. https://doi.org/10.1016/j.ultsonch.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  45. Nair A, Mallya R, Suvarna V, Khan TA, Omri A (2022) Nanoparticles attractive carriers of antimicrobial essential oils. Antibiotics 11:1–45. https://doi.org/10.3390/antibiotics11010108

  46. Ramisetty KA, Shyamsunder R (2011) Effect of ultrasonication on stability of oil in water emulsions. Internal J Drug Deliv 3:133–142

    Article  Google Scholar 

  47. Sharif HR, Abbas S, Majeed H, Safdar W, Shamoon M, Khan MA, Shoaib M, Raza H, Haider J (2017) Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch. J Food Sci Technol 54(10):3358–3365. https://doi.org/10.1007/s13197-017-2800-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sedaghat Doost A, Devlieghere F, Dirckx A, Van der Meeren P (2018) Fabrication of Origanum compactum essential oil nanoemulsions stabilized using Quillaja Saponin biosurfactant. J Food Process Preserv 42(7):1–12. https://doi.org/10.1111/jfpp.13668

  49. Kundu P, Arora K, Gu Y, Kumar V, Mishra IM (2019) Formation and stability of water-in-oil nano-emulsions with mixed surfactant using in-situ combined condensation-dispersion method. Can J Chem Eng 97:2039–2049. https://doi.org/10.1002/cjce.23481

  50. Pereira SF, Barroso A, Mour RHV (2021) A low energy approach for the preparation of nano-emulsions with a high citral-content essential oil. Molecules 26:1–11

    Article  Google Scholar 

  51. Yuliani S, Syakir TRMM (2018) Changes in characteristics of nanoemulsion of cinnamon oil and their relationships with instability mechanisms during storage. J Food Process Preserv. https://doi.org/10.1111/jfpp.13745

    Article  Google Scholar 

  52. Zhang W, Qin Y, Chang S, Zhu H, Zhang Q (2020) Influence of oil types on the formation and stability of nano-emulsions by D phase emulsification. J Dispersion Sci Technol. https://doi.org/10.1080/01932691.2020.1737538

    Article  Google Scholar 

  53. Ohtani SG, Rasert WP (2014) Nano-emulsions; emulsification using low energy methods. Japan J Food Eng 15(3):119–130

    Article  Google Scholar 

  54. Sole I, Maestro A, Pey CM, Gonzalez C, Solans C, Gutiérrez JM (2006) Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids Surf A Physicochem Eng Aspects 288:138–143. https://doi.org/10.1016/j.colsurfa.2006.02.013

  55. Izquierdo P, Esquena J, Tadros TF, Dederen C, Garcia MJ, Azemar N, Solans C (2002) Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 18:26–30

    Article  CAS  Google Scholar 

  56. Calderó G, García-celma MJ, Solans C (2011) Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. J Colloid Interface Sci 353:406–411. https://doi.org/10.1016/j.jcis.2010.09.073

    Article  CAS  PubMed  Google Scholar 

  57. Schalbart P, Kawaji M (2013) Comparison of paraffin nanoemulsions prepared by low-energy emulsification method for latent heat storage. Int J Therm Sci 67:113–119. https://doi.org/10.1016/j.ijthermalsci.2012.12.007

    Article  CAS  Google Scholar 

  58. Lu W, Huang D, Wang CCR, Yeh C, Tsai J, Huang Y, Li P (2017) Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J Food Drug Anal. https://doi.org/10.1016/j.jfda.2016.12.018

    Article  PubMed  PubMed Central  Google Scholar 

  59. Saani SM, Abdolalizadeh J, Heris SZ (2019) Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrason Sonochem 55:86–95. https://doi.org/10.1016/j.ultsonch.2019.03.018

    Article  CAS  Google Scholar 

  60. Brusewitz C, Schendler A, Funke A, Wagner T, Lipp R (2007) Novel poloxamer-based nanoemulsions to enhance the intestinal absorption of active compounds. Int J Pharmaceutics 329:173–181. https://doi.org/10.1016/j.ijpharm.2006.08.022

  61. Martin-Piñero MJ, García MC, Santos J, Alfaro-Rodriguez MC, Muñoz J (2020) Characterization of novel nanoemulsions, with improved properties, based on rosemary essential oil and biopolymers. J Sci Food Agric 100(10):3886–3894. https://doi.org/10.1002/jsfa.10430

    Article  CAS  PubMed  Google Scholar 

  62. Maghamian N, Goli M, Najarian A (2021) Ultrasound-assisted preparation of double nano-emulsions loaded with glycyrrhizic acid in the internal aqueous phase and skim milk as the external aqueous phase. Food Sci Technol 141:110850. https://doi.org/10.1016/j.lwt.2021.110850

    Article  CAS  Google Scholar 

  63. Amjadi S, Almasi H, Ghadertaj A, Mehryar L (2021) Whey protein isolate-based films incorporated with nanoemulsions of orange peel (Citrus sinensis) essential oil: preparation and characterization. J Food Process Preserv 45(2):1–12. https://doi.org/10.1111/jfpp.15196

    Article  CAS  Google Scholar 

  64. Moradi S, Barati A (2019) Essential oils nanoemulsions: Preparation, characterization and study of antibacterial activity against Escherichia coli. Int J Nanosci Nanotechnol 15(3):199–210

    CAS  Google Scholar 

  65. Firoozi M, Rezapour-Jahani S, Shahvegharasl Z, Anarjan N (2020) Ginger essential oil nanoemulsions: preparation and physicochemical characterization and antibacterial activities evaluation. J Food Process Eng 43(8). https://doi.org/10.1111/jfpe.13434

  66. Elshamy AI, Ammar NM, Hassan HA, Al-Rowaily SL, Ragab TI, El Gendy AENG, Abd-ElGawad AM (2020) Essential oil and its nanoemulsion of Araucaria heterophylla resin: chemical characterization, anti-inflammatory, and antipyretic activities. Ind Crops Prod 148:112272. https://doi.org/10.1016/j.indcrop.2020.112272

    Article  CAS  Google Scholar 

  67. Kaur H, Pancham P, Kaur R, Agarwal S, Singh M (2020) Synthesis and characterization of Citrus limonum essential oil based nanoemulsion and its enhanced antioxidant activity with stability for transdermal application. J Biomater Nanobiotechnol 11(04):215–236. https://doi.org/10.4236/jbnb.2020.114014

    Article  CAS  Google Scholar 

  68. Almasi H, Azizi S, Amjadi S (2020) Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids 99:105338. https://doi.org/10.1016/j.foodhyd.2019.105338

  69. Guerra-Rosas MI, Morales-Castro J, Ochoa-Martínez LA, Salvia-Trujillo L, Martín-Belloso O (2016) Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids 52:438–446. https://doi.org/10.1016/j.foodhyd.2015.07.017

    Article  CAS  Google Scholar 

  70. Hassanshahian M, Saadatfar A, Masoumipour F (2020) Formulation and characterization of nanoemulsion from Alhagi maurorum essential oil and study of its antimicrobial, antibiofilm, and plasmid curing activity against antibiotic-resistant pathogenic bacteria. J Environ Health Sci Eng 18(2):1015–1027. https://doi.org/10.1007/s40201-020-00523-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Das S, Singh VK, Dwivedy AK, Chaudhari AK, Upadhyay N, Singh A, Deepika, Dubey NK (2020) Fabrication, characterization and practical efficacy of Myristica fragrans essential oil nanoemulsion delivery system against postharvest biodeterioration. Ecotoxicol Environ Saf 189:110000. https://doi.org/10.1016/j.ecoenv.2019.110000

  72. Abate L, Bachheti A, Bachheti RK, Husen A (2021) Antibacterial properties of medicinal plants: recent trends, progress, and challenges. In: Traditional herbal therapy for the human immune system. CRC Press, pp 13–54

    Google Scholar 

  73. Bachheti RK, Bachheti A, Satyan RS (2018) Chemical composition of the essential oil from Schinus molle L. (Peruvian pepper). Der Pharma Chemica 10(10):139–147

    Google Scholar 

  74. Gonfa YH, Tessema FB, Bachheti A, Tadesse MG, Eid EM, Abou Fayssal S, Adelodun B, Choi KS, Širić I, Kumar P, Bachheti RK (2022) Essential oil composition of aerial part of Pluchea ovalis (Pers.) DC., silver nanoparticles synthesis, and larvicidal activities against fall armyworm. Sustainability 14(23):15785

    Google Scholar 

  75. Sharma N, Bansal M, Visht S, Sharma PK, Kulkarni GT (2014) Nanoemulsion: A new concept of delivery system anoemulsion: a new concept of delivery system. Chronicles Young Sci 1(2):1–6

    Google Scholar 

  76. Jung H, Goo W, Nam S (2009) Stability of oil-in-water nano-emulsions prepared using the phase inversion composition method. J Ind Eng Chem 15:331–335. https://doi.org/10.1016/j.jiec.2009.01.001

    Article  CAS  Google Scholar 

  77. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Coll Interface Sci 109:303–318. https://doi.org/10.1016/j.cis.2003.10.023

    Article  CAS  Google Scholar 

  78. Walker R, Deckera EA, M DJ (2014). Function opportunities and obstacles in the food industry. Food Function 1–14. https://doi.org/10.1039/c4fo00723a

  79. Lou Z, Chen J, Yu F, Wang H, Kou X, Ma C, Zhu S (2017) The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. Food Sci Technol 80:371–377. https://doi.org/10.1016/j.lwt.2017.02.037

    Article  CAS  Google Scholar 

  80. Melanie M, Miranti M, Kasmara H, Malini DM, Husodo T, Panatarani C, Joni IM, Hermawan W (2022) Nanotechnology-based bioactive antifeedant for plant protection. Nanomaterials 12(4):1–32. https://doi.org/10.3390/nano12040630

    Article  CAS  Google Scholar 

  81. Ghani S, Barzegar H, Noshad M, Hojjati M (2018) The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int J Biol Macromol 112:197–202. https://doi.org/10.1016/j.ijbiomac.2018.01.145

    Article  CAS  PubMed  Google Scholar 

  82. Ebrahimi P, Ebrahim-Magham B, Pourmorad F, Honary S (2013) Ferulic acid lecithin-based nano-emulsions prepared by using spontaneous emulsification process. Iran J Chem Chem Eng 32(3):17–25

    CAS  Google Scholar 

  83. Li P, Chiang B (2012) Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason Sonochem 19(1):192–197. https://doi.org/10.1016/j.ultsonch.2011.05.017

    Article  CAS  PubMed  Google Scholar 

  84. Yazgan H (2020) Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. LWT 130:109669. https://doi.org/10.1016/j.lwt.2020.109669

    Article  CAS  Google Scholar 

  85. Ahmad N, Ahmad R, Al-qudaihi A, Alaseel E (2019) Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv 9:20192–20206. https://doi.org/10.1039/c9ra03102b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N (2013) Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol 13(1):114–122. https://doi.org/10.1166/jnn.2013.6701

    Article  CAS  PubMed  Google Scholar 

  87. Roy A, Guha P (2018) Formulation and characterization of betel leaf (Piper betle L.) essential oil based nanoemulsion and its in vitro antibacterial efficacy against selected food pathogens. J Food Process Preserv 42(6):1–7. https://doi.org/10.1111/jfpp.13617

  88. Acevedo-Fani A, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2015) Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties. Food Hydrocolloids 47:168–177. https://doi.org/10.1016/j.foodhyd.2015.01.032

    Article  CAS  Google Scholar 

  89. Osanloo M, Sereshti H, Sedaghat MM, Amani A (2017) Nanoemulsion of Dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res 1–8

    Google Scholar 

  90. Algahtani MS, Ahmad MZ, Nourein IH, Albarqi HA, Alyami HS, Alyami MH, Alqahtani AA, Alasiri A, Algahtani TS, Mohammed AA, Ahmad J (2021) Preparation and characterization of curcumin nanoemulgel utilizing ultrasonication technique for wound healing: in vitro, ex vivo, and in vivo evaluation. Gels 7:1–17

    Article  Google Scholar 

  91. El-Moghazy TFA (2021) Comparison of the efficacy of micro and nano emulsions of caraway essential oil on quality of red chili fruits (Capsicum annuum L.) during cold storage. Int J Modern Agric 10(2):3692–3708

    Google Scholar 

  92. Mostafa DM, El-Alim SHA, Asfour MH, Al-Okbi SY, Mohamed DA, Awad G (2015) Transdermal nanoemulsions of Foeniculum vulgare Mill. essential oil: preparation, characterization and evaluation of antidiabetic potential. J Drug Deliv Sci Technol 29:99–106. https://doi.org/10.1016/j.jddst.2015.06.021

    Article  CAS  Google Scholar 

  93. Mostafa DM, Kassem AA, Asfour MH, Al Okbi SY, Mohamed DA, Hamed TES (2015) Transdermal cumin essential oil nanoemulsions with potent antioxidant and hepatoprotective activities: in-vitro and in-vivo evaluation. J Mol Liq 212:6–15. https://doi.org/10.1016/j.molliq.2015.08.047

    Article  CAS  Google Scholar 

  94. Ghosh V, Mukherjee A, Chandrasekaran N (2013) Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem 20(1):338–344. https://doi.org/10.1016/j.ultsonch.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  95. Wu C, Wang L, Hu Y, Chen S, Liu D, Ye X (2016) Edible coating from citrus essential oil-loaded nanoemulsions: physicochemical characterization and preservation performance. RSC Adv 6(25):20892–20900. https://doi.org/10.1039/c6ra00757k

    Article  CAS  Google Scholar 

  96. De Meneses AC, Sayer C, Puton BMS, Cansian RL, Araújo PHH, Oliveira DD (2019) Production of clove oil nanoemulsion with rapid and enhanced antimicrobial activity against gram-positive and gram-negative bacteria. J Food Process Eng. https://doi.org/10.1111/jfpe.13209

    Article  Google Scholar 

  97. Borges RS, Keita H, Ortiz BLS, dos Santos Sampaio TI, Ferreira IM, Lima ES, de Jesus Amazonas da Silva M, Fernandes CP, de Faria Mota Oliveira AEM, da Conceição EC, Rodrigues ABL, Filho ACMP, Castro AN, Carvalho JCT (2018) Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology 26(4):1057–1080. https://doi.org/10.1007/s10787-017-0438-9

  98. Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O (2013) Physicochemical characterization of lemongrass essential oil-alginate nanoemulsions: effect of ultrasound processing parameters. Food Bioprocess Technol 6(9):2439–2446. https://doi.org/10.1007/s11947-012-0881-y

    Article  Google Scholar 

  99. Kalateh-Seifari F, Yousefi S, Ahari H, Hosseini SH (2021) Corn starch-chitosan nanocomposite film containing nettle essential oil nanoemulsions and starch nanocrystals: optimization and characterization. Polymers 13(13):1–26. https://doi.org/10.3390/polym13132113

    Article  CAS  Google Scholar 

  100. Dasgupta N, Ranjan S, Gandhi M (2019) Nanoemulsions in food: market demand. Environ Chem Lett. https://doi.org/10.1007/s10311-019-00856-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Bachheti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hunde, Y., Bachheti, A., Chaubey, K.K., Husen, A., Bachheti, R.K. (2023). Nanoemulsions from Essential Oils: Preparation, Characterization, and Their Applications. In: Husen, A., Bachheti, R.K., Bachheti, A. (eds) Current Trends in Green Nano-emulsions. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5398-1_2

Download citation

Publish with us

Policies and ethics