Skip to main content

Ultrahigh Pressure Treatment

  • Chapter
  • First Online:
Physical Modifications of Starch

Abstract

Ultrahigh pressure (UHP), also called high hydrostatic pressure (HHP), is often defined as pressure exceeding 100 MPa. The implementation of UHP technology depends on the UHP equipment. A typical laboratory-scale UHP equipment includes a pressure vessel, closures for sealing the vessel, pumps to intensify the high pressure, and a controlling system, in general with cavity volume of 10 mL to 10 L. A commercial UHP equipment has a product handling system to transfer the product without stirring apparatus and difficult to realize the continuous monitoring of structure and properties changes (Bolumar et al., Electron beam pasteurization & complementary food processing technologies. Elsevier, London, pp. 127–155, 2015) (Fig. 9.1). Depending on the equipment, the pressure settings vary from 100 to 1000 MPa but frequently in the range of 400–600 MPa in an industrial environment (Bolumar et al., Electron beam pasteurization & complementary food processing technologies. Elsevier, London, pp. 127–155, 2015). Pressure transmits through a specific medium, which in most cases is water but is replaced by oil at a higher pressure (usually exceeds 600 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed J, Al-Attar H (2017) Structural properties of high-pressure-treated chestnut flour dispersions. Int J Food Prop 20(sup1):S766–S778

    Article  CAS  Google Scholar 

  • Ahmed J, Thomas L, Taher A, Joseph A (2016) Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions. Carbohydr Polym 152:639–647

    Article  CAS  PubMed  Google Scholar 

  • Bajaj R, Singh N, Ghumman A, Kaur A, Mishra HN (2021) Effect of high pressure treatment on structural, functional, and in-vitro digestibility of starches from tubers, cereals, and beans. Starch 74(1–2):2100096

    Google Scholar 

  • Baks T, Bruins ME, Janssen AEM, Boom RM (2008) Effect of pressure and temperature on the gelatinization of starch at various starch concentrations. Biomacromolecules 9(1):296–304

    Article  CAS  PubMed  Google Scholar 

  • Bauer BA, Knorr D (2004) Electrical conductivity: a new tool for the determination of high hydrostatic pressure-induced starch gelatinisation. Innovative Food Sci Emerg Technol 5(4):437–442

    Article  CAS  Google Scholar 

  • Bauer BA, Knorr D (2005) The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinisation as pressure time temperature indicator for high hydrostatic pressure processing. J Food Eng 68(3):329–334

    Article  Google Scholar 

  • Bauer BA, Wiehle T, Knorr D (2005) Impact of high hydrostatic pressure treatment on the resistant starch content of wheat starch. Starch 57(3–4):124–133

    Article  CAS  Google Scholar 

  • BeMiller JN, Huber KC (2015) Physical modification of food starch functionalities. Annu Rev Food Sci Technol 6:19–69

    Article  CAS  PubMed  Google Scholar 

  • Błaszczak W, Fornal J, Valverde S, Garrido L (2005a) Pressure-induced changes in the structure of corn starches with different amylose content. Carbohydr Polym 61(2):132–140

    Article  Google Scholar 

  • Błaszczak W, Misharina TA, Yuryev VP, Fornal J (2007) Effect of high pressure on binding aroma compounds by maize starches with different amylose content. LWT Food Sci Technol 40(10):1841–1848

    Article  Google Scholar 

  • Błaszczak W, Valverde S, Fornal J (2005b) Effect of high pressure on the structure of potato starch. Carbohydr Polym 59(3):377–383

    Article  Google Scholar 

  • Bolumar T, Georget E, Mathys A (2015) High pressure processing (HPP) of foods and its combination with electron beam processing. Woodhead Publishing, Sawston, pp 127–155

    Google Scholar 

  • Buleon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112

    Article  CAS  PubMed  Google Scholar 

  • Chang YJ, Choi HW, Kim HS, Lee H, Kim W, Kim DO et al (2014) Physicochemical properties of granular and non-granular cationic starches prepared under ultra high pressure. Carbohydr Polym 99:385–393

    Article  CAS  PubMed  Google Scholar 

  • Choi H-S, Kim H-S, Park C-S, Kim B-Y, Baik M-Y (2009a) Ultra high pressure (UHP)-assisted acetylation of corn starch. Carbohydr Polym 78(4):862–868

    Article  CAS  Google Scholar 

  • Choi H-W, Lee J-H, Ahn S-C, Kim B-Y, Baik M-Y (2009b) Effects of ultra high pressure, pressing time and HCl concentration on non-thermal starch hydrolysis using ultra high pressure. Starch 61(6):334–343

    Article  CAS  Google Scholar 

  • Chotipratoom S, Choi J-H, Bae J-E, Kim BY, Baik M (2015) Freeze-thaw stability, glass transition, and retrogradation of high hydrostatic pressure-assisted hydroxypropylated corn starch. Food Sci Biotechnol 24(4):1327–1333

    Article  CAS  Google Scholar 

  • Chun EH, Oh SM, Kim HY, Kim BY, Baik MY (2016) Effect of high hydrostatic pressure treatment on conventional hydroxypropylation of maize starch. Carbohydr Polym 146:328–336

    Article  CAS  PubMed  Google Scholar 

  • Colussi R, Kaur L, Zavareze EDR, Dias ARG, Stewart RB, Singh J (2018) High pressure processing and retrogradation of potato starch: influence on functional properties and gastro-small intestinal digestion in vitro. Food Hydrocoll 75:131–137

    Article  CAS  Google Scholar 

  • Colussi R, Pinto VZ, El Halal SL, Vanier NL, Villanova FA, Marques ESR et al (2014) Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches. Carbohydr Polym 103:405–413

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Jin Y, Luo Y, Zhong Y, Yue J, Song X et al (2014) Impact of continuous or cycle high hydrostatic pressure on the ultrastructure and digestibility of rice starch granules. J Cereal Sci 60(2):302–310

    Article  CAS  Google Scholar 

  • Dominique LW, Gipsy TM, Giovanna F (2019) Potato starch hydrogels produced by high hydrostatic pressure (HHP): A first approach. Polymers (Basel) 11(10):1673

    Article  Google Scholar 

  • Douzals JP, Perrier Cornet JM, Gervais P, Coquille JC (1998) High-pressure gelatinization of wheat starch and properties of pressure-induced gels. J Agric Food Chem 46(12):4824–4829

    Article  CAS  Google Scholar 

  • Du J, Yang Z, Xu X, Wang X, Du X (2019) Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch. Food Hydrocoll 91:256–262

    Article  CAS  Google Scholar 

  • Dupuis JH, Liu Q, Yada RY (2014) Methodologies for increasing the resistant starch content of food starches: A review. Compr Rev Food Sci Food Saf 13(6):1219–1234

    Article  CAS  Google Scholar 

  • Gebhardt R, Hanfland M, Mezouar M, Riekel C (2007) High-pressure potato starch granule gelatinization: synchrotron radiation micro-SAXS/WAXS using a diamond anvil cell. Biomacromolecules 8(7):2092–2097

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Zeng S, Lu X, Zhou M, Zheng M, Zheng B (2015b) Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food Chem 186:223–230

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Zeng S, Zhang Y, Lu X, Tian Y, Zheng B (2015a) The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch. Food Hydrocoll 44:285–291

    Article  CAS  Google Scholar 

  • Hayashi R, Hayashida A (1989) Increased amylase digestibility of pressure-treated starch. Agric Biol Chem 53(9):2543–2544

    CAS  Google Scholar 

  • Hwang D-K, Kim B-Y, Baik M-Y (2009) Physicochemical properties of non-thermally cross-linked corn starch with phosphorus oxychloride using ultra high pressure (UHP). Starch 61(8):438–447

    Article  CAS  Google Scholar 

  • Jiang B, Li W, Hu X, Wu J, Shen Q (2014) Rheology of mung bean starch treated by high hydrostatic pressure. Int J Food Prop 18(1):81–92

    Article  Google Scholar 

  • Katopo H, Song Y, Jane JL (2002) Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydr Polym 47(3):233–244

    Article  CAS  Google Scholar 

  • Kaur M, Punia S, Sandhu KS, Ahmed J (2019) Impact of high pressure processing on the rheological, thermal and morphological characteristics of mango kernel starch. Int J Biol Macromol 140:149–155

    Article  CAS  PubMed  Google Scholar 

  • Kawai K, Fukami K, Yamamoto K (2007) Effects of treatment pressure, holding time, and starch content on gelatinization and retrogradation properties of potato starch–water mixtures treated with high hydrostatic pressure. Carbohydr Polym 69(3):590–596

    Article  CAS  Google Scholar 

  • Kim HS, Choi HS, Kim BY, Baik MY (2010) Characterization of acetylated corn starch prepared under ultrahigh pressure (UHP). J Agric Food Chem 58(6):3573–3579

    Article  CAS  PubMed  Google Scholar 

  • Kim H-S, Hwang D-K, Kim B-Y, Baik M-Y (2012) Cross-linking of corn starch with phosphorus oxychloride under ultra high pressure. Food Chem 130(4):977–980

    Article  CAS  Google Scholar 

  • Kudla E, Tomasik P (1992a) The modification of starch by high pressure. Part I: air-and oven-dried potato starch. Starch 44(5):167–173

    Article  Google Scholar 

  • Kudla E, Tomasik P (1992b) The modification of starch by high pressure. Part II: compression of starch with additives. Starch 44(7):253–259

    Article  CAS  Google Scholar 

  • Kweon M, Slade L, Levine H (2008a) Effect of sodium chloride on glassy and crystalline melting transitions of wheat starch treated with high hydrostatic pressure: prediction of solute-induced Barostability from nonmonotonic solute-induced thermostability. Starch 60(3–4):127–133

    Article  CAS  Google Scholar 

  • Kweon M, Slade L, Levine H (2008b) Role of glassy and crystalline transitions in the responses of corn starches to heat and high pressure treatments: prediction of solute-induced barostabilty from solute-induced thermostability. Carbohydr Polym 72(2):293–299

    Article  CAS  Google Scholar 

  • Lee J-H, Choi H-W, Kim B-Y, Chung M-S, Kim D-S, Choi SW et al (2006) Nonthermal starch hydrolysis using ultra high pressure: I. effects of acids and starch concentrations. LWT Food Sci Technol 39(10):1125–1132

    Article  CAS  Google Scholar 

  • Leite TS, de Jesus ALT, Schmiele M, Tribst AAL, Cristianini M (2017) High pressure processing (HPP) of pea starch: effect on the gelatinization properties. LWT Food Sci Technol 76:361–369

    Article  CAS  Google Scholar 

  • Li W, Bai Y, Mousaa SAS, Zhang Q, Shen Q (2011a) Effect of high hydrostatic pressure on physicochemical and structural properties of Rice starch. Food Bioprocess Technol 5(6):2233–2241

    Article  Google Scholar 

  • Li W, Gao J, Saleh ASM, Tian X, Wang P, Jiang H et al (2018) The modifications in physicochemical and functional properties of Proso millet starch after ultra-high pressure (UHP) process. Starch 70(5–6):1

    CAS  Google Scholar 

  • Li W, Tian X, Liu L, Wang P, Wu G, Zheng J et al (2015) High pressure induced gelatinization of red adzuki bean starch and its effects on starch physicochemical and structural properties. Food Hydrocoll 45:132–139

    Article  CAS  Google Scholar 

  • Li W, Tian X, Wang P, Saleh AS, Luo Q, Zheng J et al (2016) Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch. Int J Biol Macromol 83:171–177

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang F, Liu P, Bai Y, Gao L, Shen Q (2011b) Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. J Food Eng 103(4):388–393

    Article  CAS  Google Scholar 

  • Li G, Zhu F (2018) Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chem 241:380–386

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhu F, Mo G, Hemar Y (2019) Supramolecular structure of high hydrostatic pressure treated quinoa and maize starches. Food Hydrocoll 92:276–284

    Article  CAS  Google Scholar 

  • Linsberger-Martin G, Lukasch B, Berghofer E (2012) Effects of high hydrostatic pressure on the RS content of amaranth, quinoa and wheat starch. Starch 64(2):157–165

    Article  CAS  Google Scholar 

  • Liu Y, Chao C, Yu J, Wang S, Wang S, Copeland L (2020b) New insights into starch gelatinization by high pressure: comparison with heat-gelatinization. Food Chem 318:126493

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Fan H, Cao R, Blanchard C, Wang M (2016a) Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure. Int J Biol Macromol 92:753–760

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Guo X, Li Y, Li H, Fan H, Wang M (2016c) In vitro digestibility and changes in physicochemical and textural properties of tartary buckwheat starch under high hydrostatic pressure. J Food Eng 189:64–71

    Article  CAS  Google Scholar 

  • Liu PL, Hu XS, Shen Q (2010) Effect of high hydrostatic pressure on starches: a review. Starch 62(12):615–628

    Article  CAS  Google Scholar 

  • Liu Y, Selomulyo VO, Zhou W (2008) Effect of high pressure on some physicochemical properties of several native starches. J Food Eng 88(1):126–136

    Article  CAS  Google Scholar 

  • Liu H, Wang L, Cao R, Fan H, Wang M (2016b) In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure. Carbohydr Polym 144:1–8

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wang C, Liao X, Shen Q (2020a) Measurement and comparison of multi-scale structure in heat and pressure treated corn starch granule under the same degree of gelatinization. Food Hydrocoll 108:106081

    Article  CAS  Google Scholar 

  • Liu M, Wu N-N, Yu G-P, Zhai X-T, Chen X, Zhang M et al (2018) Physicochemical properties, structural properties, and in vitro digestibility of pea starch treated with high hydrostatic pressure. Starch 70(1–2):1700082

    Article  Google Scholar 

  • Mota MJ, Lopes RP, Delgadillo I, Saraiva JA (2013) Microorganisms under high pressure—adaptation, growth and biotechnological potential. Biotechnol Adv 31(8):1426–1434

    Article  CAS  PubMed  Google Scholar 

  • Muhr A, Blanshard J (1982) Effect of hydrostatic pressure on starch gelatinisation. Carbohydr Polym 2(1):61–74

    Article  CAS  Google Scholar 

  • Oh HE, Pinder DN, Hemar Y, Anema SG, Wong M (2008) Effect of high-pressure treatment on various starch-in-water suspensions. Food Hydrocoll 22(1):150–155

    Article  CAS  Google Scholar 

  • Okur I, Ozel B, Oztop MH, Alpas H (2019) Effect of high hydrostatic pressure in physicochemical properties and in vitro digestibility of cornstarch by nuclear magnetic resonance relaxometry. J Food Process Eng 42(6):e13168

    Article  Google Scholar 

  • Papathanasiou MM, Reineke K, Gogou E, Taoukis PS, Knorr D (2015) Impact of high pressure treatment on the available glucose content of various starch types: A case study on wheat, tapioca, potato, corn, waxy corn and resistant starch (RS3). Innovative Food Sci Emerg Technol 30:24–30

    Article  CAS  Google Scholar 

  • Pu H, Liu G, Huang M, Zhang C, Niu W, Chen X et al (2021) Effects of annealing on ultra-high pressure induced gelatinization of corn starch. Innovative Food Sci Emerg Technol 74:102849

    Article  CAS  Google Scholar 

  • Rahman MH, Mu TH, Zhang M, Ma MM, Sun HN (2020) Comparative study of the effects of high hydrostatic pressure on physicochemical, thermal, and structural properties of maize, potato, and sweet potato starches. J Food Process Preserv 44(11):14852

    Article  Google Scholar 

  • Rubens P, Snauwaert J, Heremans K, Stute R (1999) In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell. Carbohydr Polym 39(3):231–235

    Article  CAS  Google Scholar 

  • Rumpold BA, Knorr D (2005) Effect of salts and sugars on pressure-induced gelatinisation of wheat, tapioca, and potato starches. Starch 57(8):370–377

    Article  CAS  Google Scholar 

  • Sandhu KS, Kaur M, Punia S, Ahmed J (2021) Rheological, thermal, and structural properties of high-pressure treated litchi (Litchi chinensis) kernel starch. Int J Biol Macromol 175:229–234

    Article  CAS  PubMed  Google Scholar 

  • Schneider Teixeira A, Deladino L, García MA, Zaritzky NE, Sanz PD, Molina-García AD (2018) Microstructure analysis of high pressure induced gelatinization of maize starch in the presence of hydrocolloids. Food Bioprod Process 112:119–130

    Article  CAS  Google Scholar 

  • Shen X, Shang W, Strappe P, Chen L, Li X, Zhou Z et al (2018) Manipulation of the internal structure of high amylose maize starch by high pressure treatment and its diverse influence on digestion. Food Hydrocoll 77:40–48

    Article  CAS  Google Scholar 

  • Słomińska L, Zielonka R, Jarosławski L, Krupska A, Szlaferek A, Kowalski W et al (2015) High pressure impact on changes in potato starch granules. Pol J Chem Technol 17(4):65–73

    Article  Google Scholar 

  • Stolt M, Oinonen S, Autio K (2000) Effect of high pressure on the physical properties of barley starch. Innovative Food Sci Emerg Technol 1(3):167–175

    Article  CAS  Google Scholar 

  • Stolt M, Stoforos NG, Taoukis PS, Autio K (1999) Evaluation and modelling of rheological properties of high pressure treated waxy maize starch dispersions. J Food Eng 40(4):293–298

    Article  Google Scholar 

  • Stute R, Klingler R, Boguslawski S, Eshtiaghi M, Knorr D (1996) Effects of high pressures treatment on starches. Starch 48(11–12):399–408

    Article  CAS  Google Scholar 

  • Szepes A, Makai Z, Blümer C, Mäder K, Kása P, Szabó-Révész P (2008) Characterization and drug delivery behaviour of starch-based hydrogels prepared via isostatic ultrahigh pressure. Carbohydr Polym 72(4):571–578

    Article  CAS  Google Scholar 

  • Szwengiel A, Lewandowicz G, Gorecki AR, Blaszczak W (2018) The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content. Food Chem 240:51–58

    Article  CAS  PubMed  Google Scholar 

  • Tan F-J, Dai W-T, Hsu K-C (2009) Changes in gelatinization and rheological characteristics of japonica rice starch induced by pressure/heat combinations. J Cereal Sci 49(2):285–289

    Article  CAS  Google Scholar 

  • Thevelein JM, Van Assche JA, Heremans K, Gerlsma SY (1981) Gelatinisation temperature of starch, as influenced by high pressure. Carbohydr Res 93(2):304–307

    Article  CAS  Google Scholar 

  • Tian Y, Li D, Zhao J, Xu X, Jin Z (2014) Effect of high hydrostatic pressure (HHP) on slowly digestible properties of rice starches. Food Chem 152:225–229

    Article  CAS  PubMed  Google Scholar 

  • Vallons KJR, Arendt EK (2009a) Effects of high pressure and temperature on buckwheat starch characteristics. Eur Food Res Technol 230(2):343–351

    Article  CAS  Google Scholar 

  • Vallons KJR, Arendt EK (2009b) Effects of high pressure and temperature on the structural and rheological properties of sorghum starch. Innovative Food Sci Emerg Technol 10(4):449–456

    Article  CAS  Google Scholar 

  • Vittadini E, Carini E, Chiavaro E, Rovere P, Barbanti D (2007) High pressure-induced tapioca starch gels: physico-chemical characterization and stability. Eur Food Res Technol 226(4):889–896

    Article  Google Scholar 

  • Wang C, Xue Y, Yousaf L, Hu J, Shen Q (2020) Effects of high hydrostatic pressure on the ordered structure including double helices and V-type single helices of rice starch. Int J Biol Macromol 144:1034–1042

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Gu Q, Lam E, Tian F, Chaieb S, Hemar Y (2016b) In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS. Food Hydrocoll 56:58–61

    Article  CAS  Google Scholar 

  • Yang Z, Swedlund P, Hemar Y, Mo G, Wei Y, Li Z et al (2016a) Effect of high hydrostatic pressure on the supramolecular structure of corn starch with different amylose contents. Int J Biol Macromol 85:604–614

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Li T, Gao QY, Liu B, Yu SJ (2018) Physicochemical properties and in vitro digestibility of high hydrostatic pressure treated waxy rice starch. [article]. Int J Biol Macromol 120:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ji H, Yang M, Ma H (2014) Effects of high hydrostatic pressure treated mung bean starch on characteristics of batters and crusts from deep-fried pork nuggets. Int J Food Eng 10(2):261

    Article  CAS  Google Scholar 

  • Zhang D, Xu H, Jiang B, Wang X, Yang L, Shan Y et al (2021) Effects of ultra-high pressure on the morphological and physicochemical properties of lily starch. Food Sci Nutr 9(2):952–962

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junrong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pu, H., Huang, J., Guo, S. (2023). Ultrahigh Pressure Treatment. In: Sui, Z., Kong, X. (eds) Physical Modifications of Starch. Springer, Singapore. https://doi.org/10.1007/978-981-99-5390-5_9

Download citation

Publish with us

Policies and ethics