Skip to main content

Polymeric Nanocarriers for the Delivery of Phytoconstituents

  • Chapter
  • First Online:
Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals

Abstract

In past decades, with the advent of nanotechnology, nanocarriers have been highlighted as promising drug delivery systems for therapeutic, diagnostic, and nutraceutical agents. Based on their chemical nature, the most widely studied nanocarriers can be classified into biological (proteins) and polymeric, inorganic and organic (micelles, dendrimers, and liposomes) nanostructures. Among the potential drug carrier systems, polymeric nanocarriers have gained significant importance owing to their high binding capacity, biodegradability, abundant renewable sources, low cytotoxicity, and significant uptake in targeted cells. Even more, they act as promising candidates for efficient gene and drug delivery. In particular, the unique structure of polymers allows site-specific drug targeting and conjugation in addressing various diseases. The present chapter highlights the major advances in polymeric nanocarriers as a drug delivery system for phytoconstituents including their advantages, types, limitations, and preclinical and clinical investigations. In addition, comprehensive evidence of the influence of their physicochemical properties on drug delivery profiles to design intelligent nanocarriers has also been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abasian P et al (2020) Polymeric nanocarriers in targeted drug delivery systems: a review. Poly Adv Technol 31(12):2939–2954

    Article  CAS  Google Scholar 

  • Abe MM, Martins JR, Sanvezzo PB, Macedo JV, Branciforti MC, Halley P, Brienzo M (2021) Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers 13(15):2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcázar-Alay SC, Meireles MA (2015) Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol 35:215–236

    Article  Google Scholar 

  • Alshamsan A (2014) Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm J 22:219–222

    Article  PubMed  Google Scholar 

  • Anju S, Prajitha N, Sukanya VS, Mohanan PV (2020) Complicity of degradable polymers in health-care applications. Mater Today Chem 16:100236

    Article  CAS  Google Scholar 

  • Arakawa CK, DeForest CA (2017) Polymer design and development. In: Biology and engineering of stem cell niches. Academic Press, London, pp 295–314

    Chapter  Google Scholar 

  • Arias S, Del Moral A, Ferrer MR, Tallon R, Quesada E, Bejar V (2003) Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326

    Article  CAS  PubMed  Google Scholar 

  • Arif ZU et al (2022) Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 218:930–968

    Article  CAS  PubMed  Google Scholar 

  • Avcu E et al (2022) Biodegradable polymer matrix composites containing graphene-related materials for antibacterial applications: a critical review. Acta Biomater 151:1–44

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S (2016) Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 12:33

    Google Scholar 

  • Banik BL, Fattahi P, Brown JL (2016) Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:271–299

    Article  PubMed  Google Scholar 

  • Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A, Vandelli MA, Tosi G, Grabrucker AM (2017) Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526(1–2):413–424

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Lautenschlaeger C, Kempe K, Tauhardt L, Schubert US, Fischer DJ (2012) Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly (ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. J Vis Exp 12(7):986–998

    CAS  Google Scholar 

  • Bensadoun J-C, Almeida LPD, Fine EG, Tseng JL, Déglon N, Aebischer P (2003) Comparative study of GDNF delivery systems for the CNS: polymer rods, encapsulated cells, and lentiviral vectors. J Control Release 87:107–115

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Fnu G, Bhatia D, Shahid A, Sutariya V (2020) Nanodelivery of resveratrol-loaded PLGA nanoparticles for age-related macular degeneration. AAPS PharmSciTech 21:1–9

    Article  Google Scholar 

  • Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P (2016) Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol 791:8–24

    Article  CAS  PubMed  Google Scholar 

  • Boddu SHS, Menees AL, Ray A, Mitra AK (2013) A brief overview of ocular anatomy and physiology. In: Mitra AK (ed) Treatise on ocular drug delivery. Bentham Science Publishers, Sharjah, pp 3–19

    Chapter  Google Scholar 

  • Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24):5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casalini T, Rossi F, Castrovinci A, Perale G (2019) A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol 7:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Catalin Balaure P, Mihai Grumezescu AJC (2015) Smart synthetic polymer nanocarriers for controlled and site-specific drug delivery. Curr Trends Med Chem 15(15):1424–1490

    Article  Google Scholar 

  • Cavalu S et al (2018) Novel formulation based on chitosan-arabic gum nanoparticles entrapping propolis extract production, physico-chemical and structural characterization. Rev Chim 69(12):3756–3760

    Article  CAS  Google Scholar 

  • Chen H, Yuan L, Song W, Wu Z et al (2008) Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci 33(11):1059–1087

    Article  CAS  Google Scholar 

  • Chien KB, Shah RN (2012) Novel soy protein scaffolds for tissue regeneration: material characterization and interaction with human mesenchymal stem cells. Acta Biomater 8(2):694–703

    Article  CAS  PubMed  Google Scholar 

  • Chimento A, De Amicis F, Sirianni R, Sinicropi MS, Puoci F, Casaburi I, Saturnino C, Pezzi V (2019) Progress to improve oral bioavailability and beneficial effects of resveratrol. Int J Mol Sci 20:1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho Y-S, Ji S, Kim YS (2019) Synthesis of polymeric nanoparticles by emulsion polymerization for particle self-assembly applications. J Nanosci Nanotechnol 19(10):6398–6407

    Article  CAS  PubMed  Google Scholar 

  • Chopin N, Guillory X, Weiss P, Bideau JL, Colliec-Jouault S (2014) Design polysaccharides of marine origin: chemical modifications to reach advanced versatile compounds. Curr Org Chem 18(7):867–895

    Article  CAS  Google Scholar 

  • Cosco D, Federico C, Maiuolo J, Bulotta S, Molinaro R, Paolino D et al (2014) Physicochemical features and transfection properties of chitosan/ poloxamer 188/poly (D, L-lactide-co-glycolide) nanoplexes. Int J Nanomedicine 9:2359–2372. https://doi.org/10.2147/IJN.S58362

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosco D, Paolino D, De Angelis F, Cilurzo F, Celia C, Di Marzio L et al (2015) Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response. Eur J Pharm Biopharm 89:30–39

    Article  CAS  PubMed  Google Scholar 

  • Crucho CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C 80:771–784

    Article  CAS  Google Scholar 

  • Dadwal M, Solan D, Pradesh H (2014) Polymeric nanoparticles as promising novel carriers for drug delivery: an overview. J Adv Pharm Educ Res 4(1):1

    Google Scholar 

  • Dang Y, Guan J (2020) Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med 1:10–19

    Article  PubMed  PubMed Central  Google Scholar 

  • De R, Mahata MK, Kim K (2022) Structure-based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv Sci 9(10):2105373

    Article  CAS  Google Scholar 

  • Debus H, Beck-Broichsitter M, Kissel T (2012) Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system. Lab Chip 12(14):2498–2506

    Article  CAS  PubMed  Google Scholar 

  • DeFrates KG, Moore R, Borgesi J, Lin G, Mulderig T, Beachley V, Hu X (2018) Protein-based fiber materials in medicine: a review. Nanomaterials 8(7):457

    Article  PubMed  PubMed Central  Google Scholar 

  • DeVita VT Jr, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653

    Article  CAS  PubMed  Google Scholar 

  • Dewanjee S, Bhattacharjee N (2018) MicroRNA: a new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol 155:32–47

    Article  CAS  PubMed  Google Scholar 

  • Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P (2018) Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 833:472–523

    Article  CAS  PubMed  Google Scholar 

  • Dewanjee S et al (2020) Plant-based antidiabetic nanoformulations: the emerging paradigm for effective therapy. Int J Mol Sci 21(6):2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhathathreyan K, Rajalakshmi N, Balaji R (2017) Nanomaterials for fuel cell technology. Nanotechnol energy sustainability. Part III: energy conversion and harvesting, chapter 24 Germany: Wiley-VCH Verlag GmbH & co. KGaA. p 569–596

    Google Scholar 

  • Di Marzio L, Ventura CA, Cosco D, Paolino D, Di Stefano A, Stancanelli R et al (2016) Nanotherapeutics for anti-inflammatory delivery. J Drug Deliv Sci Technol 32:174–191

    Article  Google Scholar 

  • Dias A, Hussain A, Marcos A, Roque A (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29(1):142–155

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA (2019) Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 177:389–398

    Article  CAS  PubMed  Google Scholar 

  • Elzoghby A, Freag M, Mamdouh H, Elkhodairy K (2017) Zein-based nanocarriers as potential natural alternatives for drug and gene delivery: focus on cancer therapy. Curr Pharm Des 23:5261–5271

    CAS  PubMed  Google Scholar 

  • Ernest U, Chen HY, Xu MJ, Taghipour Y, Asad M, Rahimi R, Murtaza G (2018) Anti-cancerous potential of polyphenol-loaded polymeric nanotherapeutics. Molecules 23:2787

    Article  PubMed  PubMed Central  Google Scholar 

  • Eroglu N, Emekci M, Athanassiou CG (2017) Applications of natural zeolites on agriculture and food production. J Sci Food Agric 97(11):3487–3499

    Article  CAS  PubMed  Google Scholar 

  • Esfandiarpour-Boroujeni S, Bagheri-Khoulenjani S, Mirzadeh H, Amanpour S (2017) Fabrication and study of curcumin-loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr Polym 168:14–21

    Article  CAS  PubMed  Google Scholar 

  • Farshbaf M, Davaran S, Zarebkohan A, Annabi N, Akbarzadeh A, Salehi R (2018) Significant role of cationic polymers in drug delivery systems. Artif Cells Nanomed Biotechnol 46:1872–1891

    CAS  PubMed  Google Scholar 

  • Fisher O, Khademhosseini A, Peppas N (2010) Drug delivery: nanoscale devices. Encyclopedia of materials: science and technology. Elsevier, Amsterdam

    Google Scholar 

  • Flachenecker P (2006) Epidemiology of neuroimmunological diseases. J Neurol 253(Suppl. 5):V2–V8

    Article  PubMed  Google Scholar 

  • Gagliardi A, Bonacci S, Paolino D, Celia C, Procopio A, Fresta M, Cosco D (2019) Paclitaxel-loaded sodium deoxycholate-stabilized zein nanoparticles: characterization and in vitro cytotoxicity. Heliyon 5(9)

    Google Scholar 

  • Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D (2021) Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 12:601626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gálisová A, Jirátová M, Rabyk M, Sticová E, Hájek M, Hrubý M, Jirák D (2020) Glycogen as an advantageous polymer carrier in cancer theranostics: straightforward in vivo evidence. Sci Rep 10(1):10411

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg U, Chauhan S, Nagaich U, Jain N (2019) Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull 9(2):195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George A, Shah PA, Shrivastav PS (2019) Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm 561:244–264

    Article  CAS  PubMed  Google Scholar 

  • Gera S, Talluri S, Rangaraj N, Sampathi S (2017) Formulation and evaluation of naringenin nanosuspensions for bioavailability enhancement. AAPS PharmSciTech 8:3151–3162

    Article  Google Scholar 

  • Goonoo N, Jeetah R, Bhaw-Luximon A, Jhurry DJ (2015) Polydioxanone-based biomaterials for tissue engineering and drug/gene delivery applications. Eur J Pharm Biopharm 97:371–391

    Article  CAS  PubMed  Google Scholar 

  • Grama CN, Suryanarayana P, Patil MA, Raghu G, Balakrishna N, Kumar MR, Reddy GB (2013) Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One 8:e78217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Guccione C, Oufir M, Piazzini V, Eigenmann DE, Jahne EA, Zabela V, Faleschini MT, Bergonzi MC, Smiesko M, Hamburger M (2017) Andrographolide-loaded nanoparticles for brain delivery: formulation, characterisation and in vitro permeability using hCMEC/D3 cell line. Eur J Pharm Biopharm 119:253–263

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Quan P, Fang L, Cun D, Yang M (2015) Sustained release donepezil loaded PLGA microspheres for injection: preparation, in vitro and in vivo study. Asian J Pharm Sci 10:405–414

    Article  Google Scholar 

  • Halib N, Perrone F, Cemazar M, Dapas B, Farra R, Abrami M, Chiarappa G, Forte G, Zanconati F, Pozzato G, Murena L (2017) Potential applications of nanocellulose-containing materials in the biomedical field. Materials 10(8):977

    Article  PubMed  PubMed Central  Google Scholar 

  • Haggag YA, Abd Elrahman AA, Ulber R, Zayed A (2023) Fucoidan in pharmaceutical formulations: a comprehensive review for smart drug delivery systems. Mar Drugs 21(2):112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halamoda-Kenzaoui B, Holzwarth U, Roebben G, Bogni A, BremerHoffmann S (2019) Mapping of the available standards against the regulatory needs for nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1531

    Article  PubMed  Google Scholar 

  • Heinz H, Pramanik C, Heinz O, Ding Y, Mishra RK, Marchon D et al (2017) Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep 14:33–39

    Google Scholar 

  • Hill JW (1930) Studies on polymerization and ring formation. VI. Adipic anhydride. J Am Chem Soc 52(10):4110–4114

    Article  CAS  Google Scholar 

  • Hou Y, Zhang F, Lan J, Sun F, Li J, Li M, Song K, Wu X (2019) Ultra-small micelles based on polyoxyl 15 hydroxystearate for ocular delivery of myricetin: optimization, in vitro, and in vivo evaluation. Drug Deliv 26:158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao MY, Lin AC, Liao WH, Tyng G, Chia H, Wen S, Feng H (2019) Drug-loaded hyaluronic acid hydrogel as a sustained-release regimen with dual effects in early intervention of tendinopathy. Sci Rep 9:4784

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Sheng Y, Shi J, Yu B, Yu Z, Liao G (2018) Long circulating polymeric nanoparticles for gene/drug delivery. Curr Drug Metabol 19:723–738

    Article  CAS  Google Scholar 

  • Imazato S et al (2017) Non-biodegradable polymer particles for drug delivery: a new technology for ‘bio-active’ restorative materials. Dent Mater J 36(5):524–532

    Article  CAS  PubMed  Google Scholar 

  • Jain JP, Chitkara D, Kumar NJ (2008) Polyanhydrides as localized drug delivery carrier: an update. Expert Opin Drug Deliv 5(8):889–907

    Article  CAS  PubMed  Google Scholar 

  • Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS (2019) New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int J Biol Macromol 123:968–978

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Fu S, Han J, Jin S, Lv Q, Lu Y, Qi J, Wu W, Yuan H (2012) Improvement of oral bioavailability of glycyrrhizin by sodium deoxycholate/phospholipid-mixed nanomicelles. J Drug Target 20:615–622

    Article  CAS  PubMed  Google Scholar 

  • Joye IJ, McClements DJ (2014) Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci 19:417–427

    Article  CAS  Google Scholar 

  • Kabanov AV, Gendelman HE (2007) Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci 32:1054–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ (2017) Supercritical fluid technology: an emphasis on drug delivery and related biomedical applications. Adv Healthc Mater 6(16):1700433

    Article  Google Scholar 

  • Karlsson J, Vaughan HJ, Green JJ (2018) Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Ann Rev Chem Biomol Eng 9:105–127

    Article  CAS  Google Scholar 

  • Kenry, Liu B (2018) Recent advances in biodegradable conducting polymers and their biomedical applications. Biomacromolecules 19(6):1783–1803

    Article  CAS  PubMed  Google Scholar 

  • Kesharwani P (2018) Nanotechnology-based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 136:52–77

    Article  CAS  PubMed  Google Scholar 

  • Khanra R, Bhattacharjee N, Dua TK, Nandy A, Saha A, Kalita J, Manna P, Dewanjee S (2017) Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats. Biomed Pharmacother 94:726–741

    Article  CAS  PubMed  Google Scholar 

  • Kishima H, Poyot T, Bloch J, Dauguet J, Conde F, Dolle F, Hinnen F, Pralong W, Palfi S, Deglon N et al (2004) Encapsulated GDNF-producing C2C12 cells for Parkinson’s disease: a pre-clinical study in chronic MPTP-treated baboons. Neurobiol Dis 16:428–439

    Article  CAS  PubMed  Google Scholar 

  • Kluin OS, Van der Mei HC, Busscher HJ, Neut D (2013) Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Deliv 10(3):341–351

    Article  CAS  PubMed  Google Scholar 

  • Kolanthai E, Sindu PA, Arul KT, Chandra VS, Manikandan E, Kalkura SN (2017) Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery. J Photochem Photobiol B 166:220–231

    Article  CAS  PubMed  Google Scholar 

  • Krsti’c L, González-García MJ, Diebold Y (2021) Ocular delivery of polyphenols: meeting the unmet needs. Molecules 26:370

    Article  Google Scholar 

  • Kumar S, Dilbaghi N, Saharan R, Bhanjana GJB (2012) Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience 2(4):227–250

    Article  Google Scholar 

  • La Barbera L et al (2022) Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer’s disease: current trends and future perspectives. Front Neurosci 16:939855

    Article  PubMed  PubMed Central  Google Scholar 

  • Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263:797–800

    Article  CAS  PubMed  Google Scholar 

  • Lanz-Landázuri A, Portilla-Arias J, Martinez de Ilarduya A, García-Alvarez M, Holler E, Ljubimova J, Muñoz-Guerra S (2014) Nanoparticles of esterified polymalic acid for controlled anticancer drug release. Macromol Biosci 14(9):1325–1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapasin R (2012) Rheology of industrial polysaccharides: theory and applications. Springer Science & Business Media, Boston, MA

    Google Scholar 

  • Lefley J, Waldron C, Becer CR (2020) Macromolecular design and preparation of polymersomes. Polym Chem 11(45):7124–7136

    Article  CAS  Google Scholar 

  • Lemoine D, Francois C, Kedzierewicz F, Preat V, Hoffman M, Maincent P (1996) Stability study of nanoparticles of poly(É›-caprolactone), poly(d,l-lactide) and poly(d,l-lactide-co-glycolide). Biomaterials 17(22):2191–2197

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yuan X (2007) Poly(ethylene glycol)-poly(lactic acid) copolymers for drug carriers. Prog Chem 19(6):973–981

    CAS  Google Scholar 

  • Llamas I, Moral AD, Martínez-Checa F, Arco Y, Arias S, Quesada E (2006) Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest. Antonie Van Leeuwenhoek 89:395–403

    Article  CAS  PubMed  Google Scholar 

  • Lombardo GE, Maggisano V, Celano M, Cosco D, Mignogna C, Baldan F et al (2018) Anti-htert sirna-loaded nanoparticles block the growth of anaplastic thyroid cancer xenograft. Mol Cancer Ther 17:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H (2016) Recent progress on nanostructures for drug delivery applications. J Nanomater 2016:1

    Google Scholar 

  • Madkour M, Bumajdad A, Al-Sagheer F (2019) To what extent do polymeric stabilizers affect nanoparticles characteristics? Adv Colloid Interf Sci 11:121–136

    Google Scholar 

  • Mahalunkar S, Yadav AS, Gorain M, Pawar V, Braathen R, Weiss S, Bogen B, Gosavi SW, Kundu GC (2019) Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer. Int J Nanomedicine 14:8285–8302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MaHam A et al (2009) Protein-based nanomedicine platforms for drug delivery. Small 5(15):1706–1721

    Article  CAS  PubMed  Google Scholar 

  • Maity S, Mukhopadhyay P, Kundu PP, Chakraborti AS (2017) Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals-an in vitro and in vivo approach. Carbohydr Polym 170:124–132

    Article  CAS  PubMed  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymer 3(3):1377–1397

    Article  CAS  Google Scholar 

  • Makhmalzade BS, Chavoshy FJ (2018) Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res 9(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7:339. https://doi.org/10.15171/apb.2017.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masek A, Kosmalska A (2022) Technological limitations in obtaining and using cellulose biocomposites. Front Bioeng Biotechnol 10:912052

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashak A, Rahimi A (2009) Silicone polymers in controlled drug delivery systems: a review. Iran Polymer J 18:279–295

    CAS  Google Scholar 

  • Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60:569–578

    Article  CAS  Google Scholar 

  • Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 7:e32616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyabadi TF, Dadashian F, Sadeghi GM, Asl HE (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240

    Article  Google Scholar 

  • McArthur JC (2004) HIV dementia: an evolving disease. J Neuroimmunol 157:3–10

    Article  CAS  PubMed  Google Scholar 

  • Meier W (2000) Polymer nanocapsules. Chem Soc Rev 29:295–303

    Article  CAS  Google Scholar 

  • Menei P, Montero-Menei C, Venier MC, Benoit JP (2005) Drug delivery into the brain using poly(lactide-co-glycolide) microspheres. Expert Opin Drug Deliv 2:363–376

    Article  CAS  PubMed  Google Scholar 

  • Metzler M, Pfeiffer E, Schulz SI, Dempe JS (2013) Curcumin uptake and metabolism. Biofactors 39:14–20

    Article  CAS  PubMed  Google Scholar 

  • Millili PG, Yin DH, Fan H, Naik UP, Sullivan MO (2010) Formulation of a peptide nucleic acid based nucleic acid delivery construct. Bioconjug Chem 21(3):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzoeva S et al (2018) Apigenin inhibits UVB-induced skin carcinogenesis: the role of thrombospondin-1 as an anti-inflammatory factor. Neoplasia 20(9):930–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogosanu GD, Grumezescu AM, Bejenaru C, Bejenaru LE (2016) Polymeric protective agents for nanoparticles in drug delivery and targeting. Int J Pharm 510:419–429

    Article  CAS  PubMed  Google Scholar 

  • Mokhtari H, Tavakoli S, Safarpour F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F (2021) Recent advances in chemically-modified and hybrid carrageenan-based platforms for drug delivery, wound healing, and tissue engineering. Polymers 13(11):1744

    Article  CAS  PubMed Central  Google Scholar 

  • Monge S, David G (2014) Use of phosphorus-containing polymers for the removal of metal lons from wastewater. In: Phosphorus-based polymers: from synthesis to applications, vol 11. Royal Society of Chemistry, Cambridge, pp 225–251

    Chapter  Google Scholar 

  • Nah J-W, Paek Y-W, Jeong Y-I et al (1998) Clonazepam release from poly (DL-lactide-co-glycolide) nanoparticles prepared by dialysis method. Arch Pharm Res 21(4):418–422

    Article  CAS  PubMed  Google Scholar 

  • Nava-Arzaluz GM, Piñón-Segundo E, Ganem-Rondero A, LechugaBallesteros D (2012) Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Pat Drug Deliv Formul 6(3):209–223

    Article  CAS  PubMed  Google Scholar 

  • Ozeki T, Tagami T (2014) Drug/polymer nanoparticles prepared using unique spray nozzles and recent progress of inhaled formulation. Asian J Pharm Sci 9:236–243

    Article  Google Scholar 

  • Palanikumar L, Al-Hosani S, Kalmouni M et al (2020) pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Comm Biol 3:95

    Article  CAS  Google Scholar 

  • Palma E, Pasqua A, Gagliardi A, Britti D, Fresta M, Cosco D (2018) Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: an overview. Materials 11:E1167

    Article  Google Scholar 

  • Patel A, Cholkar K, Agrahari V, Mitra AK (2013) Ocular drug delivery systems: an overview. World J Pharm 2:47–64

    Article  CAS  Google Scholar 

  • Patra JK, Das G, Fraceto LF et al (2018) Nano-based drug delivery systems: recent developments and future. Prospects 16(1):71

    Google Scholar 

  • Patra A, Satpathy S, Hussain MD (2019) Nanodelivery and anticancer effect of a limonoid, nimbolide, in breast and pancreatic cancer cells. Int J Nanomedicine 14:8095–8104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peñalva R, Morales J, González-Navarro CJ, Larrañeta E, Quincoces G, Peñuelas I, Irache JM (2018) Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. Int J Mol Sci 2018(19):2816

    Article  Google Scholar 

  • Piñón-Segundo E, Llera-Rojas VG, Leyva-Gómez G, Urbán-Morlán Z, Mendoza-Muñoz N, Quintanar-Guerrero D (2018) The emulsification diffusion method to obtain polymeric nanoparticles: two decades of research. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. Elsevier, Amsterdam, pp 51–83

    Book  Google Scholar 

  • Popovic N, Brundin P (2006) Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm 314:120–126

    Article  CAS  PubMed  Google Scholar 

  • Priya James H et al (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm Sin B 4(2):120–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Qaseem A, Humphrey LL, Sweet DE, Starkey M, Shekelle P (2012) Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann Intern Med 156:218–231

    Article  PubMed  Google Scholar 

  • Qiu LY, Bae YH (2006) Polymer architecture and drug delivery. Pharm Res 23(1):1–30

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Hasan MR (2019) Synthetic biopolymers. In: Mazumder MAJ, Sheardown H, Al-Ahmed A (eds) Functional biopolymers. Springer International Publishing, Cham, pp 1–43

    Google Scholar 

  • Rai P et al (2021) Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour Technol 325:124739

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal M, Paul AK, Lee M-T, Joykin AR, Por C-S, Mahboob T, Salibay CC, Torres MS, Guiang MMM, Rahmatullah M et al (2022) Phytochemicals and nano-phytopharmaceuticals use in skin, urogenital and locomotor disorders: are we there? Plan Theory 11:1265

    CAS  Google Scholar 

  • Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S (2018) Improvement of antihyperglycaemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem Biol Interact 295:119–132

    Article  CAS  PubMed  Google Scholar 

  • Rivas CJM, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA et al (2017) Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm 532:66–81

    Article  Google Scholar 

  • Roger E, Kalscheuer S, Kirtane A, Guru BR, Grill AE, Whittum-Hudson J, Panyam J (2012) Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 9:2103–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe MD, Eyiler E, Walters KB (2016) Hydrolytic degradation of bio-based polyesters: effect of pH and time. Polym Test 52:192–199

    Article  CAS  Google Scholar 

  • Roy N, Agrawal M, Chaudhary S, Tirkey V, Dhwaj A, Mishra N (2017) Review article on permeation enhancers: a major breakthrough in drug delivery technology. Int J Pharm Sci Res 8:1001

    CAS  Google Scholar 

  • Safdar R, Omar AA, Arunagiri A, Regupathi I, Thanabalan M (2019) Potential of chitosan and its derivatives for controlled drug release applications—a review. J Drug Del Sci Technol 49:642–659

    Article  CAS  Google Scholar 

  • Sathuvan M, Thangam R, Gajendiran M et al (2017) κ-Carrageenan: an effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohydr Polym 160:184–193

    Article  CAS  PubMed  Google Scholar 

  • Schnell E, Klinkhammer K, Balzer S et al (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of polyε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 28(19):3012–3025

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2010) Supercritical fluid technology: an overview of pharmaceutical applications. Int J Pharm Tech Res 2(1):810–826

    CAS  Google Scholar 

  • Shukla PS, Borza T, Critchley AT, Prithiviraj B (2016) Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants. Front Mar Sci 3:81

    Article  Google Scholar 

  • Siddiqui IA, Adhami VM, Ahmad N, Mukhtar H (2010) Nanochemoprevention: sustained release of bioactive food components for cancer prevention. Nutr Cancer 62:883–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sin L, Tueen B (2019) Polylactic acid: a practical guide for the processing, manufacturing, and applications of PLA. William Andrew, Oxford

    Google Scholar 

  • Singh N, Pillay V, Choonara YE (2007) Advances in the treatment of Parkinson’s disease. Prog Neurobiol 81:29–44

    Article  CAS  PubMed  Google Scholar 

  • Sj A (2016) Types of biodegradable polymers. Introduction to bioplastics engineering. Elsevier, Amsterdam, pp 81–151

    Google Scholar 

  • SödergÃ¥rd A, Stolt MJ (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27(6):1123–1163

    Article  Google Scholar 

  • Song I, Cha J, Choi M (2015) Enhanced oral bioavailability of naringenin administered in a mixed micelle formulation with pluronic F127 and tween 80 in rats. J Pharm Investig 45:633–640

    Article  CAS  Google Scholar 

  • Stylianopoulos T, Jain RK (2015) Design considerations for nanotherapeutics in oncology. Nanomedicine 11:1893–1907

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Xu C, Wu G, Ye Q, Wang CJP (2017) Poly(lactic-co-glycolic acid): applications and future prospects for periodontal tissue. Regeneration 9(6):189

    Google Scholar 

  • Suresh K, Nangia A (2018) Curcumin: pharmaceutical solids as a platform to improve solubility and bioavailability. Cryst Eng Comm 24:3277–3296

    Article  Google Scholar 

  • Taghipour YD, Hajialyani M, Naseri R, Hesari M, Mohammadi P, Stefanucci A, Mollica A, Farzaei MH, Abdollahi M (2019) Nanoformulations of natural products for management of metabolic syndrome. Int J Nanomedicine 14:5303–5321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghipour-Sabzevar V, Sharifi T, Moghaddam MM (2019) Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 10:527–550

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Chan JW, Uhrich KE (2016) Drug loading and release kinetics in polymeric micelles: comparing dynamic versus unimolecular sugar-based micelles for controlled release. J Bioact Compat Polym 31(3):227–241

    Article  CAS  Google Scholar 

  • Teotia A, Sami H, Kumar A (2015) Thermo-responsive polymers: structure and design of smart materials. In: Switchable and responsive surfaces and materials for biomedical applications. Elsevier, Amsterdam, pp 3–43

    Chapter  Google Scholar 

  • Tiarks F, Landfester K, Antonietti M (2001) Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17(3):908–918

    Article  CAS  Google Scholar 

  • Tiwari G, Tiwari R, Sriwastawa B et al (2012) Drug delivery systems: an updated review. Int J Pharm Invest 2(1):2

    Article  Google Scholar 

  • Tripathi KD (2008) Chemotherapy of neoplastic diseases. In: Essentials of medical pharmacology. Jaypee Brothers Medical Publishers, New Delhi

    Chapter  Google Scholar 

  • Tripodo G, Trapani A, Torre ML, Giammona G, Trapani G, Mandracchia D (2015) Hyaluronic acid and its derivatives in drug delivery and imaging: recent advances and challenges. Eur J Pharm Biopharm 97:400–416

    Article  CAS  PubMed  Google Scholar 

  • Tudorachi N, Lipsa R, Vasile C, Mustata FJ (2013) Poly(lactic acid)-co-aspartic acid copolymers: possible utilization in drug delivery systems. J Polym Environ 21(4):1064–1107

    Article  CAS  Google Scholar 

  • Tullis JL (1977) Albumin: 2. Guidelines for clinical use. JAMA 237(5):460–463

    Article  CAS  PubMed  Google Scholar 

  • Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 124:901–905

    Article  PubMed  Google Scholar 

  • van Vlerken LE, Vyas TK, Amiji MM (2007) Poly(ethylene glycol)- modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res (N. Y.) 24:1405–1414

    Article  Google Scholar 

  • Wan S, Zhang L, Quan Y, Wei K (2018) Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. R Soc Open Sci 5:181457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whelan J (2001) Nanocapsules for controlled drug delivery. Drug Discov Today 6:1183

    Article  PubMed  Google Scholar 

  • Wong KH, Lu A, Chen X, Yang Z (2020) Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules 25:3620

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Sun J, Su X, Yu Q, Yu Q, Zhang P (2016) A review about the development of fucoidan in antitumor activity: progress and challenges. Carbohydr Polym 154:96–111

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, Wang H, Zhou Q, Yu S (2011) PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem 59:9280–9289

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Delivery 2013:1–15

    Article  CAS  Google Scholar 

  • Yang B, Han X, Ji B, Lu R (2016) Competition between tumor and mononuclear phagocyte system causing the low tumor distribution of nanoparticles and strategies to improve tumor accumulation. Curr Drug Deliv 13:1261–1274

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu X, Hu W, Bai Y, Zhang L (2016) Preparation and evaluation of naringenin-loaded sulfobutylether-βcyclodextrin/chitosan nanoparticles for ocular drug delivery. Carbohydr Polym 149:224–230

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu C, Li C, Wu W, Jiang X (2019) Shape effects of cylindrical versus spherical unimolecular polymer nanomaterials on in vitro and in vivo behaviors. Research

    Google Scholar 

  • Zhang F, Li R, Yan M, Li Q, Li Y, Wu X (2020) Ultra-small nanocomplexes based on polyvinylpyrrolidone K-17PF: a potential nanoplatform for the ocular delivery of kaempferol. Eur J Pharm Sci 147:105289

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Yang T, Qiao Y, Guo S, Zhu L, Wu H (2015) Preparation of poly (β-L-malic acid)-based charge-conversional nanoconjugates for tumor-specific uptake and cellular delivery. Int J Nanomedicine 10:1941

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, K., Chaturvedi, A., Paliwal, S., Dwivedi, J., Sharma, S. (2024). Polymeric Nanocarriers for the Delivery of Phytoconstituents. In: Pooja, D., Kulhari, H. (eds) Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-99-5314-1_4

Download citation

Publish with us

Policies and ethics