Skip to main content

Dynamics

  • Chapter
  • First Online:
Hyperordered Structures in Materials

Part of the book series: The Materials Research Society Series ((MRSS))

  • 166 Accesses

Abstract

In this chapter, we review the wavenumber and energy ranges covered by various dynamics measurement methods and then outline inelastic neutron scattering (INS) and inelastic X-ray scattering (IXS) in particular. We explain their principles and methods and pick up recent applications and developments. As an example of recent INS research, a study of a solid refrigerant is first introduced, since Å-level dynamics contributes to thermal properties. For another example, we look at recent advances on the boson peak, which is an excitation that is universally seen in structurally disordered systems. As an example of recent IXS studies, we pick up the measurement of phonon dispersion relations of Mg alloys, which are expected to be the next-generation structural material. In the last part of this chapter, we introduce recently developed measurement techniques of IXS in which Mössbauer nuclei are excited by synchrotron radiation and used for dynamic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monaco G (2008) C R Phys 9:608

    Article  CAS  Google Scholar 

  2. Van Hove L (1954) Phys Rev 95:249

    Article  Google Scholar 

  3. See §7 in Sakurai JJ (1994) Modern quantum mechanics, revised edn. In: Tuan SF (ed). Addison-Wesley

    Google Scholar 

  4. Brockhouse BN (1959) Phys Rev Lett 2:287

    Article  CAS  Google Scholar 

  5. https://mlfinfo.jp/en/bl02/. Accessed 10 Dec 2022

  6. Shirane G, Minkiewicz VJ, Nathans R (1968) J Appl Phys 39:383

    Article  CAS  Google Scholar 

  7. Dianoux A-J, Lander G (2003) Neutron data booklet, 2nd edn. OCP Science, Philadelphia

    Google Scholar 

  8. https://www.ncnr.nist.gov/resources/n-lengths/. Accessed 10 Dec 2022

  9. Lovesay SW (1984) Theory of neutron scattering from condensed matter. Oxford University Press, Oxford

    Google Scholar 

  10. Bee M (1988) Quasielastic neutron scattering. Adam-Hilger, Bristol and Philadelphia

    Google Scholar 

  11. Nakajima K, Ohira-Kawamura S, Nakamura M, Kajimoto R, Inamura Y, Takahashi N, Aizawa K, Suzuya K, Shibata K, Nakatani T, Soyama K, Maruyama R, Tanaka H, Kambara W, Iwahashi T, Itoh Y, Osakabe T, Wakimoto S, Kakurai K, Maekawa F, Harada M, Oikawa K, Lechner RE, Mezei F, Arai M (2011) J Phys Soc Jpn 80:SB028

    Google Scholar 

  12. https://mlfinfo.jp/en/bl14/. Accessed 10 Dec 2022

  13. Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J, Chen Y, Kawaguchi SI, Kawaguchi S, Ohara K, Li K, Yu D, Mole R, Hattori T, Kikuchi T, Yano S, Zhang Z, Zhang Z, Ren W, Lin S, Sakata O, Nakajima K, Zhang Z (2019) Nature 567:506

    Article  CAS  Google Scholar 

  14. https://www.jaea.go.jp/02/press2018/p19032902/ (in Japanese). Accessed 2 Feb 2022

  15. Krishnan RS (1953) Proc Indian Acad Sci A 37:377

    Article  Google Scholar 

  16. For review, Nakayama T (2002) Rep Prog Phys 65:1195

    Google Scholar 

  17. Onodera Y, Kohara S, Salmon PS, Hirata A, Nishiyama N, Kitani S, Zeidler A, Shiga M, Masuno A, Inoue H, Tahara S, Polidori A, Fischer HE, Mori T, Kojima S, Kawaji H, Kolesnikov AI, Stone MB, Tucker MG, McDonnell MT, Hannon AC, Hiraoka Y, Obayashi I, Nakamura T, Akola J, Fujii Y, Ohara K, Taniguchi T, Sakata O (2020) NPG Asia Mater 12:85

    Google Scholar 

  18. Kofu M, Watanuki R, Sakakibara T, Ohira-Kawamura S, Nakajima K, Matsuura M, Ueki T, Akutsu K, Yamamuro O (2021) Sci Rep 11:12098

    Article  CAS  Google Scholar 

  19. Ishii Y, Yamamoto A, Sato N, Nambu Y, Ohira-Kawamura S, Murai N, Ohara K, Kawaguchi S, Mori T, Mori S (2022) Phys Rev B 106:134111

    Article  CAS  Google Scholar 

  20. Burkel E (2000) Rep Prog Phys 63:171

    Article  CAS  Google Scholar 

  21. http://www.spring8.or.jp/wkg/BL35XU/instrument/lang/INS-0000000515/instrument_summary_view. Accessed 10 Dec 2022

  22. http://user.spring8.or.jp/sp8info/?p=3138. Accessed 10 Dec 2022

  23. https://www.esrf.fr/home/UsersAndScience/Experiments/EMD/ID28.html. Accessed 10 Dec 2022

  24. https://www.aps.anl.gov/Beamlines/Directory/Details?beamline_id=6. Accessed 10 Dec 2022

  25. https://www.aps.anl.gov/Sector-30/IXS-Technique. Accessed 10 Dec 2022

  26. Ishikawa D, Baron AQR (2021) J Phys Soc Jpn 90:083602

    Article  Google Scholar 

  27. Scopigno T, Balucani U, Ruocco G, Sette F (2000) J Phys: Condens Matter 12:8009

    CAS  Google Scholar 

  28. Prince E (ed) (2006) International tables for crystallography, vol C, Mathematical, physical and chemical tables. Wiley/Int’l Union for Crystallography

    Google Scholar 

  29. https://it.iucr.org//Cb/. Accessed 10 Dec 2022

  30. Hosokawa S, Inui M, Kajihara Y, Tsutsui S, Baron AQR (2015) J Phys: Condens Matter 27:194104

    CAS  Google Scholar 

  31. Baron AQR, Tanaka Y, Goto S, Takeshita K, Matsushita T, Ishikawa T (2000) J Phys Chem Solids 61:461–465

    Article  CAS  Google Scholar 

  32. Baron AQR, Ishikawa D, Fukui H, Nakajima Y (2019) AIP Conf Proc 2054:020002

    Google Scholar 

  33. Kawamura Y, Hayashi K, Inoue A, Masumoto T (2001) Mater Trans 42:1172

    Article  CAS  Google Scholar 

  34. Abe E, Ono A, Itoi T, Yamasaki M, Kawamura Y (2011) Phil Mag Lett 91:690

    Article  CAS  Google Scholar 

  35. Hosokawa S, Kimura K, Stellhorn JR, Yoshida K, Hagihara K, Izuno H, Yamasaki M, Kawamura Y, Mine Y, Takashima K, Uchiyama H, Tsutsui S, Koura A, Shimojo F (2018) Acta Mater 146:273

    Article  CAS  Google Scholar 

  36. Hosokawa S, Kimura K, Yamasaki M, Kawamura Y, Yoshida K, Inui M, Tsutsui S, Baron AQR, Kawakita Y, Itoh S (2017) J Alloys Compd 695:426

    Article  CAS  Google Scholar 

  37. Kimura K, Yamamoto K, Hayashi K, Tsutsui S, Happo N, Yamazoe S, Miyazaki H, Nakagami S, Stellhorn JR, Hosokawa S, Matsushita T, Tajiri H, Ang AKR, Nishino Y (2020) Phys Rev B 101:024302

    Article  CAS  Google Scholar 

  38. Takada K, Yoshimi K, Tsutsui S, Kimura K, Hayashi K, Hamada I, Yanagisawa S, Kasuya N, Watanabe S, Takeya J, Wakabayashi Y (2022) Phys Rev B 105:205205

    Article  CAS  Google Scholar 

  39. Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H (2020) Nat Mater 19:491

    Google Scholar 

  40. For example, see Natkaniec I, Bokhenkov EL, Dorner B, Kalus J, Mackenzie GA, Pawley GS, Schmelzers U, Sheka EF (1980) J Phys C: Solid St Phys 13:4265

    Google Scholar 

  41. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Chem Rev 107:926

    Google Scholar 

  42. Seto M, Yoda Y, Kikuta S, Zhang XW, Ando M (1995) Phys Rev Lett 74:3828

    Article  CAS  Google Scholar 

  43. Alp EE, Sturhahn W, Toellner TS, Zhao J, Hu M, Brown DE (2002) 144/145:3

    Google Scholar 

  44. Seto M, Kobayashi Y, Kitao S, Haruki R, Mitsui T, Yoda Y, Nasu S, Kikuta S (2000) Phys Rev B 61:11420

    Article  CAS  Google Scholar 

  45. Lin J-F, Sturhahn W, Zhao J, Shen G, Mao H-K, Hemley RJ (2005) In: Chen J, Wang Y, Duffy TS, Shen G, Dobrzhinetskaya LP (eds) Advances in high-pressure techniques for geophysical applications. Elsevier, Amsterdam, p 397

    Google Scholar 

  46. Baron AQR, Franz H, Meyer A, Rüffer R, Chumakov AI, Burkel E, Petry W (1997) Phys Rev Lett 79:2823

    Article  CAS  Google Scholar 

  47. Smirnov GV, van Bürck U, Arthur J, Popov SL, Baron AQR, Chumakov AI, Ruby SL, Potzel W, Brown GS (1996) Phys Rev Lett 77:183

    Article  CAS  Google Scholar 

  48. Saito M, Yamaguchi T, Nagao M (2022) Butsuri 77:690 (in Japanese)

    Google Scholar 

  49. Saito M, Masuda R, Yoda Y, Seto M (2017) Sci Rep 7:12558

    Google Scholar 

  50. Saito M, Kitao S, Kobayashi Y, Kurokuzu M, Yoda Y, Seto M (2012) Phys Rev Lett 109:115705

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate Prof. Maiko Kofu (J-PARC Center, JAEA) and Prof. Makina Saito (Tohoku Univ.) for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayano Chiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Materials Research Society, under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiba, A., Hosokawa, S. (2024). Dynamics. In: Hayashi, K. (eds) Hyperordered Structures in Materials. The Materials Research Society Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-5235-9_6

Download citation

Publish with us

Policies and ethics