Skip to main content

A Mathematical Model to Study Regulatory Properties and Dynamical Behaviour of Glycolytic Pathway Using Bifurcation Analysis

  • Chapter
  • First Online:
Computational Methods for Biological Models

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1109))

  • 78 Accesses

Abstract

The glycolytic pathway is an almost universal central pathway of glucose catabolism and is known to be highly conserved across various species. In some mammalian tissues and cell types (for example: erythrocytes, renal medulla, brain, and sperm), the glycolytic breakdown of glucose is the sole source of metabolic energy. In glycolysis, phosphofructokinase-1 (PFK-1) catalyzes the transfer of a phosphoryl group from ATP to fructose 6-phosphate to yield fructose 1, 6-bisphosphate. The PFK-1 reaction is essentially an irreversible reaction under cellular conditions. Additionally, it is the first “committed” step in the glycolytic pathway because glucose 6-phosphate and fructose 6-phosphate have other possible fates, but fructose 1, 6-bisphosphate is targeted for glycolysis. In this chapter, a dynamical system based on mass balance equations and S-system representation has been formulated to study the regulatory properties, rate control distributions, and dynamical behaviour of reactions in this glycolytic pathway. This representation involves several parameters. Few standard tools from the bifurcation analysis such as phase-portraits, time series plots, the Lyapunov exponents and \(d_{\infty }\) plots have been employed to investigate the stability of the pathway with respect to certain chosen parameters. The study is further extended by eliminating the glycogen branch from the original pathway and by adding an external perturbation into the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.D.I. Abarbanel, R. Brown, M.B. Kennel, Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data. Int. J. Modern Phys. B 5(09), 1347–1375 (1991)

    Article  MATH  Google Scholar 

  2. B.M. Bakker, P.A.M. Michels, F.R. Opperdoes, H.V. Westerhoff, Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J. Biol. Chem. 272(6), 3207–3215 (1997)

    Article  Google Scholar 

  3. J.A. Bassham, G.H. Krause, Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochimica et Biophysica Acta (BBA)-Bioenergetics 189(2), 207–221 (1969)

    Google Scholar 

  4. P. Brechmann, A.D. Rendall, Dynamics of the Selkov oscillator. Math. Biosci. 306, 152–159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Buscarino, L. Fortuna, M. Frasca, Essentials of Nonlinear Circuit Dynamics with MATLAB® and Laboratory Experiments (CRC Press, 2017)

    Google Scholar 

  6. E.T. Camacho, D. Brager, G. Elachouri, T. Korneyeva, G. Millet-Puel, J.-A. Sahel, T. Léveillard, A mathematical analysis of aerobic glycolysis triggered by glucose uptake in cones. Sci. Rep. 9(1), 1–18 (2019)

    Article  Google Scholar 

  7. M. Cascante, N.V. Torres, R. Franco, E. Meléndez-Hevia, E.I. Canela, Control analysis of transition times. Mol. Cell. Biochem. 101(1), 83–91 (1991)

    Article  Google Scholar 

  8. R. Chaudhry, M. Varacallo, Biochemistry, glycolysis (2018)

    Google Scholar 

  9. D.R. Curtiss, Recent extentions of Descartes’ rule of signs. Ann. Math. 251–278 (1918)

    Google Scholar 

  10. H. Euler, E. Adler, Uber die Komponenten der Dehydrasesysteme. IV. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie 235, 122–173 (1935)

    Google Scholar 

  11. A.K. Groen, R. Van Der Meer, H.V. Westerhoff, R.J.A. Wanders, T.P.M. Akerboom, J.M. Tager, H. Sies, Metabolic Compartmentation (Academic, New York, 1982), p. 9

    Google Scholar 

  12. R. Heinrich, S.M. Rapoport, T.A. Rapoport, Metabolic regulation and mathematical models. Progress Biophys. Mol. Biol. 1–82 (1978)

    Google Scholar 

  13. H.G. Hers, L. Hue, Gluconeogenesis and related aspects of glycolysis. Ann. Rev. Biochem. 52(1), 617–653 (1983)

    Article  Google Scholar 

  14. B. Hess, A. Boiteux, J. Krüger, Cooperation of glycolytic enzymes. Adv. Enzyme Regul. 7, 149–167 (1969). PMID: 4244004. https://doi.org/10.1016/0065-2571(69)90016-8

  15. R.C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers (Oxford University Press, 2000)

    Google Scholar 

  16. A. Jeong, G. Fiorito, P. Keski-Rahkonen, M. Imboden, A. Kiss, N. Robinot, H. Gmuender, J. Vlaanderen, R. Vermeulen, S. Kyrtopoulos, Z. Herceg, A. Ghantous, G. Lovison, C. Galassi, A. Ranzi, V. Krogh, S. Grioni, C. Agnoli, C. Sacerdote, N. Mostafavi, A. Naccarati, A. Scalbert, P. Vineis, N. Probst-Hensch; EXPOsOMICS Consortium, Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases. Environ. Int. 119, 334–345 (2018). (PMID: 29990954)

    Google Scholar 

  17. C. Jin, X. Zhu, H. Wu, Y. Wang, X. Hu, Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells. J. Biol. Chem. 295(19), 6425–6446 (2020)

    Article  Google Scholar 

  18. S. Kar, D.S. Ray, Nonlinear dynamics of glycolysis. Modern Phys. Lett. B 18(14), 653–678 (2004)

    Article  Google Scholar 

  19. S. Lenzen, A fresh view of glycolysis and glucokinase regulation: history and current status. J. Biol. Chem. 289(18), 12189–94 (2014)

    Article  Google Scholar 

  20. J.C. Liao, Modelling and analysis of metabolic pathways. Curr. Opin. Biotechnol. 4(2), 211–216 (1993)

    Article  MathSciNet  Google Scholar 

  21. S. Lynch, Dynamical Systems with Applications Using MATLAB (Birkhäuser, Boston, 2004)

    Book  MATH  Google Scholar 

  22. G. Maria, In silico determination of some conditions leading to glycolytic oscillationsand their interference with some other processes in E. coli cells. Front. Chem. 977 (2020)

    Google Scholar 

  23. C. McCann, Bifurcation Analysis of Non-linear Differential Equations (University of LiverPool, 2013)

    Google Scholar 

  24. B.C. Mulukutla, A. Yongky, S. Grimm, P. Daoutidis, W.-S. Hu, Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. PLoS One 10(3), e0121561 (2015)

    Article  Google Scholar 

  25. D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, 6th edn

    Google Scholar 

  26. E.A. Newsholme, Regulation in Metabolism (Wiley, 1973)

    Google Scholar 

  27. G. Overal, B. Teusink, F.J. Bruggeman, J. Hulshof, R. Planqué, Bifurcation analysis of metabolic pathways: an illustration from yeast glycolysis. bioRxiv, 163600 (2017)

    Google Scholar 

  28. M.A. Savageau, E.O. Voit, Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math. Biosci. 87(1), 83–115 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. M.A. Savageau, Power-law formalism: a canonical nonlinear approach to modeling and analysis, in Proceedings of the First World Congress on World Congress of Nonlinear Analysts’ 92, vol. IV (1995), pp. 3323–3334

    Google Scholar 

  30. M.A. Savageau, Allometric morphogenesis of complex systems: derivation of the basic equations from first principles. Proc. Natl. Acad. Sci. 76(12), 6023–6025 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. M.A. Savageau, Growth of complex systems can be related to the properties of their underlying determinants. Proc. Natl. Acad. Sci. 76(11), 5413–5417 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Schwartz, H.R. Mahler, E.H. Cordes, Biological chemistry. XV und 872 S., 236 Abb., 96 Tab. Evanston-London 1966: Harper and Row Ltd. 90 s (1969), pp. 410–411

    Google Scholar 

  33. E. van Schaftingen, D.R. Davies, H.G. Hers, Fructose-2,6-bisphosphatase from rat liver. Eur. J. Biochem. 124(1), 143–9 (1982)

    Article  Google Scholar 

  34. M.C. Scrutton, M.F. Utter, The regulation of glycolysis and gluconeogenesis in animal tissues. Annu. Rev. Biochem. 37, 249–302 (1968)

    Article  Google Scholar 

  35. E.E. Selkov, J.G. Reich, Energy Metabolism of the Cell (Academic, 1981)

    Google Scholar 

  36. H. Singh, H. Srivastava, D. Baleanu, Methods of Mathematical Modelling: Infectious Disease (Academic, 2022)

    Google Scholar 

  37. H. Singh, D. Baleanu, J. Singh, H. Dutta, Computational study of fractional order smoking model. Chaos Solitons & Fractals 142, 110440 (2021)

    Article  MathSciNet  Google Scholar 

  38. H. Singh, Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells. Chaos Solitons & Fractals 146, 110868 (2021)

    Article  MathSciNet  Google Scholar 

  39. H. Singh, Analysis for fractional dynamics of Ebola virus model. Chaos Solitons & Fractals 138, 109992 (2020)

    Article  MathSciNet  Google Scholar 

  40. M.W. Slein, G.T. Cori, C.F. Cori, A comparative study of hexokinase from yeast and animal tissues. J. Biol. Chem. 186(2), 763–780 (1950)

    Article  Google Scholar 

  41. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018)

    Google Scholar 

  42. N.V. Torres, F. Mateo, J.M. Riol-Cimas, E. Meléndez-Hevia, Control of glycolysis in rat liver by glucokinase and phosphofructokinase: influence of glucose concentration. Mol. Cell. Biochem. 93(1), 21–26 (1990)

    Article  Google Scholar 

  43. N.V. Torres, F. Mateo, E. Melendez-Hevia, H. Kacser, Kinetics of metabolic pathways. A system in vitro to study the control of flux. Biochem. J. 234(1), 169–174 (1986)

    Google Scholar 

  44. N.V. Torres, Modelization and experimental studies on the control of the glycolytic-glycogenolytic pathway in rat liver. Mol. Cell. Biochem. 132, 117–126 (1994)

    Article  Google Scholar 

  45. L.W.M. Verburg, Modeling and control, of glycolysis in trypanosoma brucei. Dissertation Master Thesis, Department of Mathematics, Vrije Universiteit, Amsterdam, 2006

    Google Scholar 

  46. D.V. Verveyko, A.Y. Verisokin, E.B. Postnikov, Mathematical model of chaotic oscillations and oscillatory entrainment in glycolysis originated from periodic substrate supply. Chaos: Interdiscip. J. Nonlinear Sci. 27(8), 083104 (2017)

    Google Scholar 

  47. E.O. Voit, The best models of metabolism. Wiley Interdiscip. Rev.: Syst. Biol. Med. 9(6), e1391 (2017)

    Google Scholar 

  48. E.O. Voit, (Case Study-4) Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists (Cambridge University Press, 2000)

    Google Scholar 

  49. X. Wang, Bifurcation analysis of two biological systems: a tritrophic food chain model and an oscillating networks model. Doctoral dissertation, The University of Western Ontario, Canada 2018

    Google Scholar 

  50. O. Warburg, W. Christian, Uber ein neues Oxyda-tionsferment und sein Absorptionsspektrum. Biochem. Z. 254, 438–458 (1932)

    Google Scholar 

  51. P.O. Westermark, A. Lansner, A model of phosphofructokinase and glycolytic oscillations in the pancreatic \(\beta \)-cell. Biophys. J. 85(1), 126–139 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh M. Chadha .

Editor information

Editors and Affiliations

Appendices

Appendix 1: S-System Study of Pathway

The mass-balance equation can be translated into S-system,

$$\begin{aligned} &\frac{dX_1}{dt}= \alpha _1 X_4^{g_{14}} X_6^{g_{16}} X_{11}^{g_{1,11}}- \beta _1 X_1^{h_{11}} X_2^{h_{12}} X_7^{h_{17}}, \nonumber \\ &\frac{dX_2}{dt} = \alpha _2 X_1^{g_{21}} X_2^{g_{22}} X_5^{g_{25}} X_7^{g_{27}} X_{10}^{g_{2,10}} - \beta _2 X_2^{h_{22}} X_3^{h_{23}} X_8^{h_{28}}, \nonumber \\ &\frac{dX_3}{dt} = \alpha _3 X_2^{g_{32}} X_3^{g_{33}} X_8^{g_{38}} - \beta _3 X_3^{h_{33}} X_9^{h_{39}}. \end{aligned}$$
(26)

There is one rate constant for each pool’s production and one rate constant for its degradation in this S-system. These are \(\alpha _1, \alpha _2, \alpha _3\) and \(\beta _1, \beta _2, \beta _3\), respectively. For each \(X_i\)s, one subscript is used for each power. Power is represented by g in the production term and h in the degradation term. The parameters \(\alpha _i\) and \(g_{ij}\) always refer to production or gain, whereas the parameters \(\beta _i\) and \(h_{ij}\) always refer to degradation or loss, i.e. the greater \(\alpha _i\)s indicate more production and the larger \(\beta _i\)s imply a loss in production.

With the help of the precursor-product relationship between \(X_2\) & \(X_3\) and branch point constraint at \(X_2\), we can reduce the number of unknowns.

Because \(V_2^{-}\) and \(V_3^{+}\) reflect the same process, the precursor-product relationship implies that the values of the constraints’ parameters be equal.

$$\begin{aligned} \alpha _3 = \beta _2, g_{32} = h_{22}, g_{33} = h_{23}, g_{38} = h_{28}. \end{aligned}$$
(27)

According to the branch point restriction at \(X_2\), the total of the two fluxes entering \(X_2\) from \(X_1\) and \(X_5\), namely \(V_1^{-}\) and \(V_5^{-}\), must equal the influx \(V_2^{+}\). The constraint on branch points can be written as

$$\begin{aligned} &V_{2}^{+} = V_{1}^{-} + V_{5}^{-}, i.e. \nonumber \\ &\alpha _{2} X_1^{g_{21}} X_2^{g_{22}} X_5^{g_{25}} X_7^{g_{27}} X_{10}^{g_{2,10}} = \beta _{1} X_1^{h_{11}} X_2^{h_{12}} X_7^{h_{17}} + \beta _{5} X_{2}^{h_{52}} X_5^{h_{55}} X_{10}^{h_{5,10}}. \end{aligned}$$
(28)

These expressions can be understood as a power-law representation in this case. We may use the partial differentiation of the left-hand side of the equation to get the power terms \(g_{21}, g_{22}, g_{25}, g_{27}\), and \(g_{2,10}\).

$$\begin{aligned} &g_{27} = \frac{\partial V_{2}^{+}}{\partial X_7} \frac{X_7}{V_{2}^{+}} \nonumber \\ & = \frac{\partial (\beta _1 X_{1}^{h_{11}} X_{2}^{h_{12}} X_{7}^{h_{17}} + \beta _5 X_{2}^{h_{52}} X_{5}^{h_{55}} X_{10}^{h_{5,10}}) }{\partial X_7} \frac{X_7}{V_{2}^{+}}. \end{aligned}$$
(29)

By doing partial differentiation, the first term is

\(g_{27} = \beta _1 h_{17} X_{1}^{h_{11}} X_{2}^{h_{12}} X_{7}^{h_{17}-1} \frac{X_7}{V_{2}^{+}} \), which is equivalent to \(h_{17} \frac{V_{1}^{-}}{V_{2}^{+}}\) and the second term of the equation will become zero. Thus,

\(g_{27} = h_{17} \frac{V_{1}^{-}}{V_{2}^{+}}\). Similarly, we can compute the other ones i.e.

\(g_{21} = h_{11} \frac{V_{1}^{-}}{V_{2}^{+}}\), \(g_{25} = h_{55} \frac{V_{5}^{-}}{V_{2}^{+}}\), \(g_{2,10} = h_{5,10} \frac{V_{5}^{-}}{V_{2}^{+}}\). The last one is \(g_{22}\) whose derivation may be difficult because of both the terms \(V_{5}^{-}\) and \(V_{1}^{-}\) depend upon \(X_2\).

$$\begin{aligned} &g_{22} = \frac{\partial V_{2}^{+}}{\partial X_2} \frac{X_2}{V_{2}^{+}}, \nonumber \\ & = \frac{\partial (\beta _1 X_{1}^{h_{11}} X_{2}^{h_{12}} X_{7}^{h_{17}} + \beta _5 X_{2}^{h_{52}} X_{5}^{h_{55}} X_{10}^{h_{5,10}}) }{\partial X_2} \frac{X_2}{V_{2}^{+}}, \nonumber \\ & = \beta _1 h_{12} X_{1}^{h_{11}} X_{2}^{h_{12}-1} X_{7}^{h_{17}} + \beta _5 h_{52} X_{2}^{h_{52}-1} X_{5}^{h_{55}} X_{10}^{h_{5,10}} \frac{X_7}{V_{2}^{+}}, \nonumber \\ & = h_{12} \frac{\beta _1 X_{1}^{h_{11}} X_{2}^{h_{12}} X_{7}^{h_{17}}}{V_{2}^{+}} + h_{52} \frac{\beta _5 X_{2}^{h_{52}} X_{5}^{h_{55}} X_{10}^{h_{5,10}}}{V_{2}^{+}}, \nonumber \\ & = h_{12} \frac{V_{1}^{-}}{V_{2}^{+}} + h_{52} \frac{V_{5}^{-}}{V_{2}^{+}}. \end{aligned}$$
(30)

Appendix 2: Steady State Analysis of the Dynamical System Eq. (8)

We require equations that characterise the steady state in an explicit algebraic form for more theoretical investigations, such as a general analysis of logarithmic sensitivities. The structure and characteristics of these equations can be investigated. To find the steady state, divide each equation by its rate constant \(\alpha _i\) and set the three symbolic equations to zero. The result is

$$\begin{aligned} & X_4^{g14} X_6^{g16} - \frac{\beta _1}{\alpha _1} X_1^{h_{11}} X_2^{h_{12}} X_7^{h_{17}} = 0, \nonumber \\ & X_1^{g_{21}} X_2^{g_{22}} X_5^{g_{25}} X_7^{g_{27}} X_10^{g_{2,10}} - \frac{\beta _2}{\alpha _2} X_2^{h22} X_3^{h23} X_8^{h28} = 0,\nonumber \\ & X_2^{g_{32}} X_3^{g_{33}} X_8^{g_{38}} - \frac{\beta _3}{\alpha _3} X_3^{h33} X_9^{h39} = 0. \end{aligned}$$
(31)

Next, we define \(y_i = \log X_i\) for \(i = 1, 2, \ldots , 10\) and \(b_i = \log \left( \frac{\beta _i}{\alpha _i}\right) \) for \(i = 1, 2, 3\). Power term can be expressed as \(X_i^{g_{ij}} = \exp (g_{ij} \log X_i)\), and taking log to all terms, we obtain

$$\begin{aligned} &b_1 + h_{11} y_1 + h_{12} y_2 + h_{17} y_7 - g_{14} y_4 + g_{16} y_6 = 0, \nonumber \\ &b_2 + h_{22} y_2 + h_{23}y_3 + h_{28} y_8 - g_{21} y_4 - g_{22} y_2 - g_{25} y_5 - g_{27} y_7 - g_{2,10} y_{10}, \nonumber \\ &b_3 + h_{33} y_3 + h_{39} y_9 - g_{32} y_2 - g_{33} y_3 - g_{38} y_8 = 0. \end{aligned}$$
(32)

By solving the system of linear equations (32), we will get two solution sets. One is with respect to the parameters \(h_{55}\), \(h_{52}\), \(h_{33}\), \(h_{5,10}\), \(\alpha _i\) and \(\beta _i\) for \(i = 1, 2, 3\). While putting the value of the parameters from Sect.  2, Table 1. The value of the variables \(y_i\) will be \(\log (X_i)\), all \(X_i\) are from Sect. 2, Table 2. Corresponding solutions set for this system Eq. (32) is

$$\begin{aligned} &h_{33} = h_{33}, h_{52} = h_{52}, h_{55} = h_{55}, h_{5,10} = h_{5,10}, \nonumber \\ &\alpha _1 = 0.8333333333e-2 \exp (-1.530000000 y_1 + 0.5900000000 y_2 + 1.519706161) \beta _1, \nonumber \\ & \alpha _2 = \exp (0.5129289136 h_{5,10} + 0.5954920276 h_{55} - 0.3700000000 y_2 h_{52} + 0.9486000000 y_1 \nonumber \\ & - 3.604200000 y_2 + 3.060000000 y_3 - 2.625549624) \beta _2, \nonumber \\ & \alpha _3 = \alpha _3, \beta _1 = \beta _1, \beta _2 = \beta _2, \nonumber \\ &\beta _3 = 0.7352941176e-2 \exp (h_{33} y_3 - 3.970000000 y_2 + 3.060000000 y_3 + 1.050821625)\alpha _3. \end{aligned}$$
(33)

The second solution set is generated only for \(Y_1, Y_2, Y_3\), in which only \(\alpha _i\), \(\beta _i\) and \(h_{33}, h_{55}, h_{52}\) and \(h_{5,10}\) parameters are unknown. Solution set is

$$\begin{aligned} &Y_1=- \frac{1}{(46250. h_{52} h_{33} + (4.04800e+05) h_{33} + (1.41525e+05) h_{52} - (2.79837e+05))}((2.042483660e+06) \nonumber \\ &((-1.405361185e+10) h_{33} h_{55} - (1.210512236e+10) h_{33} h_{5,10} + (1.441680000e+11) \nonumber \\ &\log \frac{\alpha _1}{\beta _1} h_{33} + (4.836322660e+10) h_{52} h_{33} - (2.355910293e+11) + (4.528800000e+10) h_{52} \log \frac{\alpha _1}{\beta _1}\nonumber \\ & + (1.480000000e+10) \log \frac{\alpha _1}{\beta _1} h_{33} h_{52} - (4.477392000e+10) \log \frac{\alpha _1}{\beta _1} + (7.221600000e+10) \log \frac{\alpha _3}{\beta _3} + \nonumber \\ & (7.221600000e+10) \log \frac{\alpha _2}{\beta _2} + (5.330730828e+11) h_{33} + (2.360000000e+10) h_{33} \log \frac{\alpha _2}{\beta _2} \nonumber \\ & + (1.479914734e+11) h_{52} - (4.300405227e+10) h_{55} - (3.704167443e+10) h_{5,10})), \end{aligned}$$
(34)
$$\begin{aligned} &Y_2 = - \frac{1}{(46250 h_{52} h_{33} + (4.04800e+05) h_{33} + (1.41525e+05) h_{52} - (2.79837e+05))}((3.125000000e+04) \nonumber \\ &((-2.381968110e+08) h_{33} h_{55} - (2.051715654e+08) h_{33} h_{5,10} + (1.860630674e+09) h_{33} + \nonumber \\ & (4.00000000e+08) h_{33} \log \frac{(\alpha _2)}{\beta _2} - (7.288822418e+08) h_{55} - (6.2782499033+08) h_{5,10} + \nonumber \\ &(2.48000000e+08) \log \frac{\alpha _1}{\beta _1} h_{33} + (1.224000000e+09) \log \frac{\alpha _2}{\beta _2} + (9.666459509 e+08) + \nonumber \\ & (7.58880000e+08) \log \frac{\alpha _1}{\beta _1} + (1.224000000e+09) \log \frac{\alpha _3}{\beta _3})), \end{aligned}$$
(35)
$$\begin{aligned} &Y_3 = \frac{1}{(46250 h_{52} h_{33} + (4.04800e+05) h_{33} + (1.41525e+05) h_{52} - (2.79837e+05))} (0.6250000000e-5 \nonumber \\ &((2.857756613e+10) h_{52} + (4.728206699e+10) h_{55} + (4.072655574e+10) h_{5,10} - (7.400000000e+09) \nonumber \\ &h_{52} \log \frac{(\alpha _3}{\beta _3} - (1.192119721e+11) - (7.940000000e+10) \log \frac{\alpha _2}{\beta _2} - (4.922800000e+10) \nonumber \\ & \log \frac{\alpha _1}{\beta _1} - (6.476800000e+10) \log \frac{\alpha _3}{\beta _3})). \end{aligned}$$
(36)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomar, S., Chadha, N.M., Khanna, A. (2023). A Mathematical Model to Study Regulatory Properties and Dynamical Behaviour of Glycolytic Pathway Using Bifurcation Analysis. In: Singh, H., Dutta, H. (eds) Computational Methods for Biological Models. Studies in Computational Intelligence, vol 1109. Springer, Singapore. https://doi.org/10.1007/978-981-99-5001-0_4

Download citation

Publish with us

Policies and ethics