Skip to main content

Plant Molecular Farming: A Boon for Developing Countries

  • Chapter
  • First Online:
Tools & Techniques of Plant Molecular Farming

Abstract

Developing countries are often at the back of the queue to receive much-needed vaccines and diagnostics. This chapter discusses the diseases prevalent to a handful of these countries and how plant molecular farming can be an effective, feasible, and timely solution to these challenges. The chapter has a strong focus on health care, particularly diagnostic and vaccines/therapeutic proteins as the main contribution. The chapter suggests that PMF could be a tool to uplift, empower, and build capability within developing countries. Instead of relying on foreign “aid” from the developing world, these countries can take matters into their own hands, with homegrown solutions. A case study of the author’s own molecular farming company in Cape Town, South Africa, is presented as proof of concept. From edible vaccines to the One Health concept, the chapter explores how the plant-based platform is a boon for developing nations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

API:

Active pharmaceutical ingredient

BRU:

Biopharming Research Unit

BVDV:

Bovine viral diarrhea virus

CBP:

Cape Bio Pharms

CBT:

Cape Biologix Technologies

CDC:

Centers for Disease Control

cGMP:

Current good manufacturing practice

COPD:

Chronic obstructive pulmonary disease

COVID-19:

Coronavirus disease 2019

CSIR:

Council for Scientific and Industrial Research

CVD:

Cardiovascular disease

FDA:

Food and Drug Administration

FIND:

Foundation for Innovative New Diagnostics

FMD:

Foot and mouth disease

GCD:

β-Glucocerebrosidase

GD:

Gaucher disease

GLP:

Good laboratory practice

HDI:

Human Development Index

HIV:

Human immunodeficiency virus

INTA:

National Institute of Agricultural Technology

ISPMF:

International Society for Plant Molecular Farming

KBP:

Kentucky BioProcessing

LMIC:

Low- and middle-income countries

NAb:

Neutralizing antibody

NCD:

Non-communicable diseases

NVD:

Newcastle disease virus

OECD:

Organization for Economic Cooperation and Development

PALM:

Pathology and Laboratory Medicine

PAVM:

Partnerships for African Vaccine Manufacturing

PBFD:

Psittacine beak and feather disease

PMF:

Plant molecular farming

RHD:

Rabbit hemorrhagic disease

RNA:

Ribonucleic acid

SAHPRA:

South African Health Products Regulatory Authority

TB:

Tuberculosis

UN:

United Nations

VLP:

Virus-like particle

WHO:

World Health Organization

References

  • Amon JJ, Torreele E (2021) Virtual roundtable—equitable COVID-19 vaccine access. Health Hum Rights J 23:273–288

    Google Scholar 

  • Arntzen C (2015) Plant-made pharmaceuticals: from “edible vaccines” to Ebola therapeutics. Plant Biotechnol J 13:1013–1016

    PubMed  PubMed Central  Google Scholar 

  • Arntzen C, Plotkin S, Dodet B (2005) Plant-derived vaccines and antibodies: potential and limitations. Vaccine 23:1753–1756

    CAS  PubMed  Google Scholar 

  • Arokiasamy P (2018) India’s escalating burden of non-communicable diseases. Lancet Glob Health 6:e1262–e1263

    PubMed  Google Scholar 

  • Bhatt H, Santosh K, Thapa P (2022) Drug manufacturing and access to medicine in Nepal—A literature review of challenges and proposed remediation. Dhaka Univ J Pharm Sci 20:373–379

    Google Scholar 

  • Bigna JJ, Noubiap JJ (2019) The rising burden of non-communicable diseases in sub-Saharan Africa. Lancet Glob Health 7:e1295–e1296

    PubMed  Google Scholar 

  • Boutayeb A (2007) Developing countries and neglected diseases: challenges and perspectives. Int J Equity Health 6:4–7

    Google Scholar 

  • Chamas C, Barbeitas MM, Correa M, Kameda K, de Oliveira ACD, Villarinho L (2022) Innovation in diagnostics: addressing gaps in low- and middle-income countries. Bull World Health Organ 100:467–467A

    PubMed  PubMed Central  Google Scholar 

  • Chandranand P (2021) Review on infectious diseases in India and their respective diagnostic platforms. Int J Res Appl Sci Eng Technol 9:1862–1871

    Google Scholar 

  • Clarke JL, Paruch L, Dobrica MO, Caras I, Tucureanu C, Onu A, Ciulean S, Stavaru C, Eerde A, Wang Y et al (2017) Lettuce-produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination. Plant Biotechnol J 15:1611–1621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cookson MD, Stirk PMR (2019) UN sustainable development goals

    Google Scholar 

  • Damoah IS, Akwei CA, Amoako IO, Botchie D (2018) Corruption as a source of government project failure in developing countries: evidence from Ghana. Proj Manag J 49:17–33

    Google Scholar 

  • Davey RT, Dodd L, Proschan MA, Neaton J (2017) A randomized, controlled trial of ZMapp for Ebola virus infection. N Engl J Med 176:139–148

    Google Scholar 

  • Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242

    CAS  PubMed  Google Scholar 

  • De Rycker M, Baragaña B, Duce SL, Gilbert IH (2018) Challenges and recent progress in drug discovery for tropical diseases. Nature 559:498–506

    PubMed  PubMed Central  Google Scholar 

  • de Souza Leandro A, Lopes RD, Martins CA, Rivas AV, da Silva I, Galvão SR, Maciel-de-Freitas R (2021) The adoption of the one health approach to improve surveillance of venomous animal injury, vector-borne and zoonotic diseases in Foz do Iguaçu, Brazil. PLoS Negl Trop Dis 15:1–8

    Google Scholar 

  • Dennis SJ, O’Kennedy MM, Rutkowska D, Tsekoa T, Lourens CW, Hitzeroth II, Meyers AE, Rybicki EP (2018) Safety and immunogenicity of plant-produced African horse sickness virus-like particles in horses. Vet Res 49:105

    PubMed  PubMed Central  Google Scholar 

  • European T, Framework U, Consortium P (2005) Molecular farming for new drugs and vaccines. EMBO Rep 6:593

    Google Scholar 

  • Ferronato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health 16:1060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer R, Buyel JF (2020) Molecular farming—the slope of enlightenment. Biotechnol Adv 40:107519

    CAS  PubMed  Google Scholar 

  • Fleming KA, Horton S, Wilson ML, Atun R, DeStigter K, Flanigan J, Sayed S, Adam P, Aguilar B, Andronikou S et al (2021) The lancet commission on diagnostics: transforming access to diagnostics. Lancet 6736:1997

    Google Scholar 

  • Gide A (2014) The health of the people-what works. The African Regional Health Report

    Google Scholar 

  • Gunter CJ, Regnard GL, Rybicki EP, Hitzeroth II (2019) Immunogenicity of plant-produced porcine circovirus-like particles in mice. Plant Biotechnol J 17:1751–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    CAS  PubMed  Google Scholar 

  • Hu Y (2020) Emerging and reemerging infectious diseases: global overview. Res Soc Strat Mobil 68:1–8

    Google Scholar 

  • Huber C, Finelli L, Stevens W (2018) The economic and social burden of the 2014 Ebola outbreak in West Africa. J Infect Dis 218:S698–S704

    PubMed  Google Scholar 

  • Huddy SM, Hitzeroth II, Meyers AE, Weber B, Rybicki EP (2018) Transient expression and purification of horseradish peroxidase C in Nicotiana benthamiana. Int J Mol Sci 19:1–13

    Google Scholar 

  • Human Development Network, The World Bank, Institute for Health Metrics and Evaluation (2016) The global burden of disease generating evidence, guiding policy. Middle East and North Africa Regional Edition

    Google Scholar 

  • Impossible Foods (2016) The Impossible Burger. Agric Food E-Newsletter, pp 1–4

    Google Scholar 

  • Islam SMS, Purnat TD, Phuong NTA, Mwingira U, Schacht K, Fröschl G (2014) Non communicable diseases (NCDs) in developing countries: a symposium report. Glob Health 10:1–7

    Google Scholar 

  • Islam MD, Kaplan WA, Trachtenberg D, Thrasher R, Gallagher KP, Wirtz VJ (2019) Impacts of intellectual property provisions in trade treaties on access to medicine in low and middle income countries: a systematic review. Glob Health 15:1–14

    Google Scholar 

  • Johnston RB, Berg M, Johnson CA, Tilley E, Hering JG (2011) Water and sanitation in developing countries: geochemical aspects of quality and treatment. Elements 7:163–168

    CAS  Google Scholar 

  • Kaneda T, Greenbaum C, Haub C (2021) World Population Data Sheet 2021

    Google Scholar 

  • Katzmarzyk PT, Friedenreich C, Shiroma EJ, Lee IM (2022) Physical inactivity and non-communicable disease burden in low-income, middle-income and high-income countries. Br J Sports Med 56:101–106

    PubMed  Google Scholar 

  • Kurup VM, Thomas J (2020) Edible vaccines: promises and challenges. Mol Biotechnol 62:79–90

    CAS  PubMed  Google Scholar 

  • Ma JKC, Christou P, Chikwamba R, Haydon H, Paul M, Ferrer MP, Ramalingam S, Rech E, Rybicki E, Wigdorowitz A et al (2013) Realising the value of plant molecular pharming to benefit the poor in developing countries and emerging economies. Plant Biotechnol J 11:1029–1033

    PubMed  Google Scholar 

  • Maharjan PM, Choe S (2021) Plant-based COVID-19 vaccines: current status, design, and development strategies of candidate vaccines. Vaccine 9:1–21

    Google Scholar 

  • Malkhazova S, Pestina P, Prasolova A, Orlov D (2020) Emerging natural focal infectious diseases in Russia: a medical–geographical study. Int J Environ Res Public Health 17:1–12

    Google Scholar 

  • Mason HS, Lam DMK, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A 89:11745–11749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mbewana S, Meyers AE, Weber B, Mareledwane V, Ferreira ML, Majiwa PAO, Rybicki EP (2018) Expression of Rift Valley fever virus N-protein in Nicotiana benthamiana for use as a diagnostic antigen. BMC Biotechnol 18:1–10

    Google Scholar 

  • Meyers A, Chakauya E, Shephard E, Tanzer FL, Maclean J, Lynch A, Williamson A, Rybicki EP (2008) Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol 15:1–15

    Google Scholar 

  • Murad S, Fuller S, Menary J, Moore C, Pinneh E, Szeto T, Hitzeroth I, Freire M, Taychakhoonavudh S, Phoolcharoen W et al (2020) Molecular pharming for low and middle income countries. Curr Opin Biotechnol 61:53–59

    CAS  PubMed  Google Scholar 

  • Nations U (2020) Statistical yearbook 2020 edition

    Google Scholar 

  • Naupu PN, van Zyl AR, Rybicki EP, Hitzeroth II (2020) Immunogenicity of plant-produced human papillomavirus (HPV) virus-like particles (VLPS). Vaccine 8:1–15

    Google Scholar 

  • Nkengasong J (2020) Let Africa into the market for COVID-19 diagnostics. Nature 580:565

    CAS  PubMed  Google Scholar 

  • O’Sullivan A, Sheffrin SM (2003) Economics: principles in action. Prentice Hall, Needham, MA

    Google Scholar 

  • Onwujekwe O, Agwu P, Orjiakor C, Mbachu C, Hutchinson E, Odii A, Obi U, Ogbozor A, Ichoku H, Mckee M et al (2018) Corruption in the health sector in Anglophone West Africa: common forms of corruption and mitigation strategies. In: Anti-corruption evidence, pp 1–32

    Google Scholar 

  • Padma TV (2021) Will Covid become a disease of the young? Nature 595:342–343

    CAS  PubMed  Google Scholar 

  • Paul M, Teh A, Twyman R, Ma J (2013) Target product selection—where can molecular pharming make the difference? Curr Pharm Des 19:5478–5485

    CAS  PubMed  Google Scholar 

  • Ponndorf D, Meshcheriakova Y, Thuenemann EC, Dobon Alonso A, Overman R, Holton N, Dowall S, Kennedy E, Stocks M, Lomonossoff GP et al (2021) Plant-made dengue virus-like particles produced by co-expression of structural and non-structural proteins induce a humoral immune response in mice. Plant Biotechnol J 19:745–756

    CAS  PubMed  Google Scholar 

  • Rattanapisit K, Bulaon CJI, Khorattanakulchai N, Shanmugaraj B, Wangkanont K, Phoolcharoen W (2021a) Plant-produced SARS-CoV-2 receptor binding domain (RBD) variants showed differential binding efficiency with anti-spike specific monoclonal antibodies. PLoS One 16:1–15

    Google Scholar 

  • Rattanapisit K, Yusakul G, Shanmugaraj B, Kittirotruji K, Suwatsrisakul P, Prompetchara E, Taychakhoonavud S, Phoolcharoen W (2021b) Plant-produced recombinant SARS-CoV-2 receptor-binding domain; an economical, scalable biomaterial source for COVID-19 diagnosis. Biomater Transl 2:43–49

    PubMed  PubMed Central  Google Scholar 

  • Ravi I, Baunthiyal M, Saxena J (2013) Edible vaccines. Adv Biotechnol:1–259. https://doi.org/10.1007/978-81-322-1554-7_12

  • Rhodes JI, Mandivenyi W (2020) South Africa—synthetic biology regulatory considerations and biodiversity—a legal perspective for South Africa. In: Chaurasia A, Hawksworth DL, de Miranda M (eds) GMOs: implications for biodiversity conservation and ecological processes. Springer International Publishing, Cham, pp 495–499

    Google Scholar 

  • Rosales-Mendoza S, Ríos-Huerta R, Angulo C (2015) An overview of tuberculosis plant-derived vaccines. Expert Rev Vaccines 14:877–889

    CAS  PubMed  Google Scholar 

  • Rybicki EP (2017) Plant-made vaccines and reagents for the one health initiative. Hum Vaccines Immunother 13:2912–2917

    Google Scholar 

  • Rybicki EP, Chikwamba R, Koch M, Rhodes JI, Groenewald JH (2012) Plant-made therapeutics: an emerging platform in South Africa. Biotechnol Adv 30:449–459

    PubMed  Google Scholar 

  • Rybicki E, Hitzeroth I, Meyers A, Santos M, Wigdorovitz A (2013) Developing country applications of molecular farming: case studies in South Africa and Argentina. Curr Pharm Des 19:5612–5621

    CAS  PubMed  Google Scholar 

  • Scheller J, Conrad U (2005) Production of spider silk proteins in transgenic tobacco and potato. In: Molecular farming: plant-made pharmaceuticals and technical proteins, pp 171–181

    Google Scholar 

  • Sehnke PC, Pedrosa L, Paul AL, Frankel AE, Ferl RJ (1994) Expression of active, processed ricin in transgenic tobacco. J Biol Chem 269:22473–22476

    CAS  PubMed  Google Scholar 

  • Sijmons PC, Dekker BMM, Schrammeijer B, Verwoerd TC, Van Den Elzen PJM, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8:217–221

    CAS  PubMed  Google Scholar 

  • Smith KM, Machalaba CC, Seifman R, Feferholtz Y, Karesh WB (2019) Infectious disease and economics: the case for considering multi-sectoral impacts. One Health 7:100080

    PubMed  PubMed Central  Google Scholar 

  • Stander J, Chabeda A, Rybicki EP, Meyers AE (2021) A plant-produced virus-like particle displaying envelope protein domain III elicits an immune response against West Nile virus in mice. Front Plant Sci 12:1–12

    Google Scholar 

  • Thakur JS, Paika R, Singh S (2020) Burden of noncommunicable diseases and implementation challenges of national NCD Programmes in India. Med J Armed Forces India 76:261–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N (2002) Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 359:2188–2194

    PubMed  Google Scholar 

  • Tschofen M, Knopp D, Hood E, Stöger E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem 9:271–294

    Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    CAS  PubMed  Google Scholar 

  • Waheed MT, Sameeullah M, Khan FA, Syed T, Ilahi M, Gottschamel J, Lössl AG (2016) Need of cost-effective vaccines in developing countries: what plant biotechnology can offer? Springerplus 5:1–9

    Google Scholar 

  • Waldman EA, Sato APS (2016) Path of infectious diseases in Brazil in the last 50 years: an ongoing challenge. Rev Saude Publica 50:1–18

    Google Scholar 

  • Wang’ombe JK (1995) Public health crises of cities in developing countries. Soc Sci Med 41:857–862

    PubMed  Google Scholar 

  • Weichert N, Hauptmann V, Menzel M, Schallau K, Gunkel P, Hertel TC, Pietzsch M, Spohn U, Conrad U (2014) Transglutamination allows production and characterization of native-sized ELPylated spider silk proteins from transgenic plants. Plant Biotechnol J 12:265–275

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Biopharming Research Unit at the University of Cape Town.

Research Contracts and Innovation (RC&I) office at the University of Cape Town.

DTI, THRIP (South African Government Department of Trade and Industry).

University of Cape Town.

The Evergreen Fund.

University Technology Fund (UTF).

Markus Sack, consultant to Cape Biologix and original designer of SARS-CoV-2 spike sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamlyn Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaw, T., Jordaan, S., Ramsaroop, T., Pera, F., Lebeko, M. (2023). Plant Molecular Farming: A Boon for Developing Countries. In: Kole, C., Chaurasia, A., Hefferon, K.L., Panigrahi, J. (eds) Tools & Techniques of Plant Molecular Farming. Concepts and Strategies in Plant Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-4859-8_11

Download citation

Publish with us

Policies and ethics