Skip to main content

Exploiting Integrated Breeding Strategies to Improve Salinity Tolerance in Crop Plants

  • Chapter
  • First Online:
Salinity and Drought Tolerance in Plants

Abstract

Abiotic stress has emerged as a major threat to food security, accounting for the majority of crop and agricultural product losses worldwide. Salinity is one of the primary key variables that inhibit plant growth and productivity among other abiotic stresses. The growing negative effects of salinity stress (SS) are putting global food and nutritional security at jeopardy. Plants respond to high salinity stress by initiating a series of events and adapt by activating a number of stress-responsive genes. However, the complex and poorly known mechanism of salt tolerance (ST) are key roadblocks to breeding for improved ST. As a result, while making crop selections, the focus should be on assessing crop diversity and addressing adaptive/morpho-physiological traits. The quick and precise introgression of ST-related gene(s)/QTLs into salinity-susceptible cultivars to restore genotypes with improved ST is also important. Therefore, a sensible integration of molecular breeding, functional genomics, and transgenic technologies, as well as next-generation phenomics facilities, is required for the gradual tailoring of salinity-tolerant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Farid IB, Marghany MR, Rowezek MM, Sheded MG (2020) Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plan Theory 9(11):1626

    CAS  Google Scholar 

  • Akram S, Siddiqui MN, Hussain BN, Al Bari MA, Mostofa MG, Hossain MA, Tran LSP (2017) Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J Plant Growth Regul 36:877–888

    Article  CAS  Google Scholar 

  • Asif MA, Garcia M, Tilbrook J, Brien C, Dowling K, Berger B et al (2020) Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Funct Plant Biol 48(2):131–140

    Article  Google Scholar 

  • Aziz EE, Al-Amier H, Craker LE (2008) Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. Int J Geogr Inf Syst 14:77–87

    CAS  Google Scholar 

  • Billah M, Aktar S, Brestic M, Zivcak M, Khaldun ABM, Uddin MS, Bagum SA, Yang X, Skalicky M, Mehari TG, Maitra S, Hossain A (2021) Progressive genomic approaches to explore drought- and salt-induced oxidative stress responses in plants under changing climate. Plan Theory 10(9):1910

    CAS  Google Scholar 

  • Cao D, Li Y, Liu B, Kong F, Tran LSP (2018) Adaptive mechanisms of soybean grown on salt-affected soils. Land Degrad Dev 29:1054–1064

    Article  Google Scholar 

  • Chattopadhyay K, Mohanty SK, Vijayan J, Marndi BC, Sarkar A, Molla KA, Chakraborty K, Ray S, Sarkar RK (2021) Genetic dissection of component traits for salinity tolerance at reproductive stage in rice. Plant Mol Biol Report 39(2):386–402

    Article  CAS  Google Scholar 

  • Derakhshani Z, Bhave M, Shah RM (2020) Metabolic contribution to salinity stress response in grains of two barley cultivars with contrasting salt tolerance. Environ Exp Bot 179:104229

    Article  CAS  Google Scholar 

  • Diao F, Dang Z, Cui X, Xu J, Jia B, Ding S, Zhang Z, Guo W (2021) Transcriptomic analysis revealed distinctive modulations of arbuscular mycorrhizal fungi inoculation in halophyte Suaeda salsa under moderate salt conditions. Environ Exp Bot 183:104337

    Article  CAS  Google Scholar 

  • Du C, Li H, Liu C, Fan H (2021) Understanding of the postgerminative development response to salinity and drought stresses in cucumber seeds by integrated proteomics and transcriptomics analysis. J Proteome 232:104062

    Article  CAS  Google Scholar 

  • Duarte-Delgado D, Dadshani S, Schoof H, Oyiga BC, Schneider M, Mathew B, Léon J, Ballvora A (2020) Transcriptome profiling at osmotic and ionic phases of salt stress response in bread wheat uncovers trait-specific candidate genes. BMC Plant Biol 20(1):428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hendawy SE, Hu Y, Schmidhalter U (2005) Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Austral J Agric Res 56:123–134

    Article  CAS  Google Scholar 

  • El-Metwally S, Hamza T, Zakaria M, Helmy M (2013) Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput Biol 9(12):e1003345

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Metwally S, Ouda OM, Helmy M (2014) First- and next-generations sequencing methods. In: El-Metwally S, Ouda OM, Helmy M (eds) Next generation sequencing technologies and challenges in sequence assembly. Springer, New York, pp 29–36

    Chapter  Google Scholar 

  • FAO (2008) FAOSTAT. FAO, Rome

    Google Scholar 

  • FAO (2015) FAO land and plant nutrition management service. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Farooq S, Azam F (2005) The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J Plant Physiol 163:629–637

    Article  PubMed  Google Scholar 

  • Farsiani A, Ghobadi ME (2009) Effects of PEG and NaCl stress on two cultivars of corn (Zea mays L.) at germination and early seedling stages. World Acad Sci Eng Technol 57:382–385

    Google Scholar 

  • Filippou P, Zarza X, Antoniou C, Obata T, Villarroel CA, Ganopoulos I, Harokopos V, Gohari G, Aidinis V, Madesis P, Christou A, Fernie AR, Tiburcio AF, Fotopoulos V (2021) Systems biology reveals key tissue-specific metabolic and transcriptional signatures involved in the response of Medicago truncatula plant genotypes to salt stress. Comput Struct Biotechnol J 19:2133–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fricke W, Akhiyarova G, Wei WX et al (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095

    Article  CAS  PubMed  Google Scholar 

  • Frukh A, Siddiqi TO, Khan MIR, Ahmad A (2020) Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol Biochem 146:55–70

    Article  CAS  PubMed  Google Scholar 

  • Gilliham M, Able JA, Roy SJ (2017) Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J 90(5):898–917

    Article  CAS  PubMed  Google Scholar 

  • Goldsworthy (1994) Calcium and salinity. Appl Biol 4:1–6

    Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Hamooh BT, Sattar FA, Wellman G, Mousa MAA (2021) Metabolomic and biochemical analysis of two potato (Solanum tuberosum L.) cultivars exposed to in vitro osmotic and salt stresses. Plan Theory 10(1):98

    CAS  Google Scholar 

  • Haque T, Elias SM, Razzaque S, Biswas S, Khan SF, Jewel GMNA, Rahman MS, Juenger TE, Seraj ZI (2020) Natural variation in growth and physiology under salt stress in rice: QTL mapping in a Horkuch × IR29 mapping population at seedling and reproductive stages. 2020.03.01.971895

    Google Scholar 

  • Hasan A, Hafiz HR, Siddiqui N, Khatun M, Islam R, Mamun AA (2015) Evaluation of wheat genotypes for salt tolerance based on some physiological traits. J Crop Sci Biotechnol 18:333–340

    Article  Google Scholar 

  • Hussain S (2018) Native RNA-sequencing throws its hat into the transcriptomics ring. Trends Biochem Sci 43(4):225–227

    Article  CAS  PubMed  Google Scholar 

  • Jahan N, Zhang Y, Lv Y, Song M, Zhao C, Hu H, Cui Y, Wang Z, Yang S, Zhang A, Hu J, Ye G, Qian Q, Gao Z, Guo L (2020) QTL analysis for rice salinity tolerance and fine mapping of a candidate locus qSL7 for shoot length under salt stress. Plant Growth Regul 90(2):307–319

    Article  CAS  Google Scholar 

  • Jha UC, Bohra A, Jha R, Parida SK (2019) Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep 38(3):255–277

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Ren X, Li L, Hou R, Sun W, Jiao C, Yang N, Dong Y (2020) H2S regulation of metabolism in cucumber in response to salt-stress through transcriptome and proteome analysis. Front Plant Sci 11:1283

    Article  PubMed  PubMed Central  Google Scholar 

  • Jusovic M, Velitchkova MY, Misheva SP, Börner A, Apostolova EL, Dobrikova AG (2018) Photosynthetic responses of a wheat mutant (Rht-B1c) with altered DELLA proteins to salt stress. J Plant Growth Regul 37(2):645–656

    Article  CAS  Google Scholar 

  • Kalhoro NA, Rajpar I, Kalhoro SA, Ali A, Raza S, Ahmed M et al (2016) Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). Am J Plant Sci 7:2257

    Article  CAS  Google Scholar 

  • Kashyap SP, Prasanna HC, Kumari N, Mishra P, Singh B (2020) Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Sci Rep 10(1):15835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients-a field trial. Aust J Crop Sci 7:249–254

    CAS  Google Scholar 

  • Khadhri A, Neffati M, Smiti S, Nogueira JMM, Araujo MEM (2011) Influence of salt stress on essential oil yield and composition of lemon grass (Cymbopogon schoenanthus L. Spreng. ssp. Laniger (Hook) Maire et Weil). Nat Prod Res 25:108–117

    Article  CAS  PubMed  Google Scholar 

  • Khaje-Hosseini M, Powell AA, Bingham IJ (2003) The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Sci Technol 31:715–725

    Article  Google Scholar 

  • Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J (2018) Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Front Plant Sci 9:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai Y, Zhang D, Wang J, Wang J, Ren P, Yao L, Si E, Kong Y, Wang H (2020) Integrative transcriptomic and proteomic analyses of molecular mechanism responding to salt stress during seed germination in Hulless Barley. Int J Mol Sci 21(1):359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei P, Liu Z, Hu Y, Kim H, Liu S, Liu J, Xu L, Li J, Zhao Y, Yu Z, Qu Y, Huang F, Meng F (2021) Transcriptome analysis of salt stress responsiveness in the seedlings of wild and cultivated Ricinus communis L. J Biotechnol 327:106–116

    Article  CAS  PubMed  Google Scholar 

  • Li J, Essemine J, Shang C, Zhang H, Zhu X, Yu J, Chen G, Qu M, Sun D (2020) Combined proteomics and metabolism analysis unravels prominent roles of antioxidant system in the prevention of alfalfa (Medicago sativa L.) against salt stress. Int J Mol Sci 21(3):909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Peng Z, Mao X, Wang J, Li C, Chang X, Jing R (2021) Genetic insights into natural variation underlying salt tolerance in wheat. J Exp Bot 72(4):1135–1150

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Xiao Z, Li M-W, Wong F-L, Yung W-S, Ku Y-S, Wang Q, Wang X, Xie M, Yim AK-Y, Chan T-F, Lam H-M (2019) Transcriptomic reprogramming in soybean seedlings under salt stress. Plant Cell Environ 42(1):98–114

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Zheng Q, Hu P, Liu L, Yang G, Li H, Li B, Li Z (2021) Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theor Appl Genet 134(1):171–189

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Shi C, Su C, Liu Y (2020) Complementary analyses of the transcriptome and iTRAQ proteome revealed mechanism of ethylene dependent salt response in bread wheat (Triticum aestivum L.). Food Chem 325:126866

    Article  CAS  PubMed  Google Scholar 

  • Mahajan M, Sharma S, Kumar P, Pal PK (2020) Foliar application of KNO3 modulates the biomass yield, nutrient uptake and accumulation of secondary metabolites of Stevia rebaudiana under saline conditions. Ind Crop Prod 145:112102

    Article  CAS  Google Scholar 

  • Muthu V, Abbai R, Nallathambi J, Rahman H, Ramasamy S, Kambale R, Thulasinathan T, Ayyenar B, Muthurajan R (2020) Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLoS ONE 15(1):e0227421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwando E, Angessa TT, Han Y, Zhou G, Li C (2021) Quantitative trait loci mapping for vigour and survival traits of barley seedlings after germinating under salinity stress. Agronomy 11(1):103

    Article  CAS  Google Scholar 

  • Niron H, Barlas N, Salih B, Türet M (2020) Comparative transcriptome, metabolome, and ionome analysis of two contrasting common bean genotypes in saline conditions. Front Plant Sci 11:599501

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan J, Li Z, Dai S, Ding H, Wang Q, Li X, Ding G, Wang P, Guan Y, Liu W (2020) Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. Sci Rep 10(1):13660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda A, Rangani J, Parida AK (2021) Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. Plant Physiol Biochem 158:284–296

    Article  CAS  PubMed  Google Scholar 

  • Pitann B, Kranz T, Mühling KH (2009) The apoplastic pH and its significance in adaptation to salinity in corn (Zea mays L.): comparison of fluorescence microscopy and pH-sensitive microelectrodes. Plant Sci 176:497–504

    Article  CAS  PubMed  Google Scholar 

  • Pundir P, Devi A, Krishnamurthy SL, Sharma PC, Vinaykumar NM (2021) QTLs in salt rice variety CSR10 reveals salinity tolerance at reproductive stage. Acta Physiol Plant 43(2):35

    Article  CAS  Google Scholar 

  • Rasouli F, Kiani-Pouya A, Li L, Zhang H, Chen Z, Hedrich R, Wilson R, Shabala S (2020) Sugar beet (Beta vulgaris) guard cells responses to salinity stress: a proteomic analysis. Int J Mol Sci 21(7):2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza A (2022) Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Rep 41(3):741–763

    Article  CAS  PubMed  Google Scholar 

  • Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F (2019) Metabolomics: a way forward for crop improvement. Metabolites 9(12):303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich-Griffin C, Stechemesser A, Finch J, Lucas E, Ott S, Schäfer P (2020) Single-cell transcriptomics: a high-resolution avenue for plant functional genomics. Trends Plant Sci 25(2):186–197

    Article  CAS  PubMed  Google Scholar 

  • Said-Al Ahl HAH, Mahmoud AA (2010) Effect of zinc and/or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean J Appl Sci 3(1):56–65

    Google Scholar 

  • Satir O, Berberoglu S (2016) Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crop Res 192:134–143

    Article  Google Scholar 

  • Shalan MN, Abdel-Latif TAT, Ghadban EAE (2006) Effect of water salinity and some nutritional compounds on the growth and production of sweet marjoram plants (Majorana hortensis L.). Egypt J Agric Res 84(3):959

    Google Scholar 

  • Shereen A, Mumtaz S, Raza S, Khan MA, Solangi S (2005) Salinity effects on seedling growth and yield components of different inbred rice lines. Pak J Bot 37:131–139

    Google Scholar 

  • Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S (2021a) Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 19(1):173

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Kota S, Flowers TJ (2021b) Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theor Appl Genet 134(11):3495–3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soren KR, Madugula P, Kumar N, Barmukh R, Sengar MS, Bharadwaj C, Sharma PC, Singh S, Bhandari A, Singh J, Sanwal SK, Pal M, Mann A, Sagurthi SR, Ps S, Siddique KHM, Singh NP, Roorkiwal M, Varshney RK (2020) Genetic dissection and identification of candidate genes for salinity tolerance using Axiom®CicerSNP array in chickpea. Int J Mol Sci 21(14):5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Zhang X, Gong B, Yan Y, Shi Q (2020) Proteomics and metabolomics analysis of tomato fruit at different maturity stages and under salt treatment. Food Chem 311:126009

    Article  CAS  PubMed  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J Exp Bot 62(6):2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL (2020) 5Gs for crop genetic improvement. Curr Opin Plant Biol 56:190–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME (2021) Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci 26(6):631–649

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wang X, Liu K, Zhang X-J, Zhang L-Y, Fan S-J (2020) Comparative transcriptome analysis of Halophyte Zoysia macrostachya in response to salinity stress. Plants 9(4):458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Chen X, Lu X, Zhao B, Yang Y, Liu J (2021) Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiol Biochem 160:315–328. https://doi.org/10.1016/j.plaphy.2021.01.027

    Article  CAS  PubMed  Google Scholar 

  • Yadav AK, Kumar A, Grover N, Ellur RK, Bollinedi H, Krishnan SG, Bhowmick PK, Vinod KK, Nagarajan M, Singh AK (2021) Genome-wide association study reveals marker–trait associations for early vegetative stage salinity tolerance in rice. Plants 10(3):559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefirad S, Soltanloo H, Ramezanpour SS, Nezhad KZ, Shariati V (2020) The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS ONE 15(3):e0229513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue JY, Wang LH, Dou XT, Wang YJ, Wang HZ (2020) Comparative metabolomic profiling in the roots of salt-tolerant and salt-intolerant maize cultivars treated with NaCl stress. Biol Plant 64(1):569–577

    Article  CAS  Google Scholar 

  • Zhang R, Wang Y, Hussain S, Yang S, Li R, Liu S, Chen Y, Wei H, Dai Q, Hou H (2022) Study on the effect of salt stress on yield and grain quality among different rice varieties. Front Plant Sci 13:918460

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Fan Y, Shabala S, Li C, Lv C, Guo B, Xu R, Zhou M (2020) Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines. Int J Mol Sci 21(4):1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Luo F, Zou R, Liu J, Yan Y (2021) Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. J Proteome 234:104097

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, R., Tomar, M., Mahajan, M., Yadav, P., Rana, A., Seva Nayak, D. (2023). Exploiting Integrated Breeding Strategies to Improve Salinity Tolerance in Crop Plants. In: Kumar, A., Dhansu, P., Mann, A. (eds) Salinity and Drought Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-99-4669-3_16

Download citation

Publish with us

Policies and ethics