Skip to main content

Pansharpening of Multispectral Images Through the Inverse Problem Model with Non-convex Sparse Regularization

  • Conference paper
  • First Online:
Intelligent Control, Robotics, and Industrial Automation (RCAAI 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1066))

  • 230 Accesses

Abstract

Pansharpening is considered as an imperative process for various remote sensing applications viz. crop monitoring, hazard monitoring, object detection and classification etc. The Pansharpening technique combines panchromatic and multispectral pictures to create a high resolution multispectral image. In this paper, the pansharpening approach and a variational optimization model are discussed. As an ill-posed inverse issue, a cost function is proposed, with three prior components, two of which are data-fidelity terms generated from the relationship between the source and output images. The third term is integrated to regularize the formulated inverse model. The eminent solver, alternating direction method of multipliers in conjunction with iterative minimization mechanism is employed to obtain the comprehensive minimum of the proposed convex cost function. The minimized solution is the required pansharpened image. The effectiveness of the suggested strategy is assessed using three different datasets and four recognized indicators. The results, both objective and subjective, show the effectiveness of the variational optimization pansharpening (VOPS) model. The merged image has greatly improved spectral and spatial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vargas-Munoz JE, Srivastava S, Tuia D, Falcao AX et al (2021) A new benchmark based on recent advances in multispectral pansharpening: revisiting pansharpening with classical and emerging pansharpening methods. IEEE Geosci Remote Sens Mag 9(1):184

    Article  Google Scholar 

  2. Javan FD, Samadzadegan F, Mehravar S, Toosi A, Khatami R, Stein A (2021) A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery. ISPRS J Photogrammetry Remote Sens 171:101–117

    Article  Google Scholar 

  3. Yilmaz CS, Yilmaz V, Gungor O (2022) A theoretical and practical survey of image fusion methods for multispectral pansharpening. Inf Fusion 79:1–43

    Article  Google Scholar 

  4. Tu TM, Huang PS, Hung CL, Chang CP (2004) A fast intensity-hue-saturation fusion technique with spectral adjustment for ikonos imagery. IEEE Geosci Remote Sens Lett 1(4):309–312

    Article  Google Scholar 

  5. Garzelli A, Nencini F, Capobianco L (2007) Optimal mmse pan sharpening of very high resolution multispectral images. IEEE Trans Geosci Remote Sens 46(1):228–236

    Article  Google Scholar 

  6. Choi J, Yu K, Kim Y (2010) A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Trans Geosci Remote Sens 49(1):295–309

    Article  Google Scholar 

  7. Otazu X, González-Audícana M, Fors O, Núñez J (2005) Introduction of sensor spectral response into image fusion methods. application to wavelet-based methods. IEEE Trans Geosci Remote Sens 43(10):2376–2385

    Google Scholar 

  8. Aiazzi B, Alparone L, Baronti S, Garzelli A, Selva M (2006) Mtf-tailored multiscale fusion of high-resolution ms and pan imagery. Photogrammetric Eng Remote Sens 72(5):591–596

    Article  Google Scholar 

  9. Witharana C, LaRue MA, Lynch HJ (2016) Benchmarking of data fusion algorithms in support of earth observation based antarctic wildlife monitoring. ISPRS J Photogrammetry Remote Sens 113:124–143

    Article  Google Scholar 

  10. Li S, Yang B (2010) A new pan-sharpening method using a compressed sensing technique. IEEE Trans Geosci Remote Sens 49(2):738–746

    Article  Google Scholar 

  11. Vicinanza MR, Restaino R, Vivone G, Dalla Mura M, Chanussot J (2014) A pansharpening method based on the sparse representation of injected details. IEEE Geosci Remote Sens Lett 12(1):180–184

    Article  Google Scholar 

  12. Gogineni R, Chaturvedi A (2018) Sparsity inspired pan-sharpening technique using multi-scale learned dictionary. ISPRS J Photogrammetry Remote Sens 146:360–372

    Article  Google Scholar 

  13. Ayas S, Gormus ET, Ekinci M (2018) An efficient pan sharpening via texture based dictionary learning and sparse representation. IEEE J Select Topics Appl Earth Observ Remote Sens 11(7):2448–2460

    Article  Google Scholar 

  14. Imani M, Ghassemian H (2017) Pansharpening optimisation using multiresolution analysis and sparse representation. Int J Image Data Fusion 8(3):270–292

    Google Scholar 

  15. Deng LJ, Vivone G, Paoletti ME, Scarpa G, He J, Zhang Y, Chanussot J, Plaza A (2022) Machine learning in pansharpening: a benchmark, from shallow to deep networks. IEEE Geosci Remote Sens Mag 10(3):279–315

    Article  Google Scholar 

  16. Zhong J, Yang B, Huang G, Zhong F, Chen Z (2016) Remote sensing image fusion with convolutional neural network. Sens Imaging 17(1):1–16

    Article  Google Scholar 

  17. Scarpa G, Vitale S, Cozzolino D (2018) Target-adaptive cnn-based pansharpening. IEEE Trans Geosci Remote Sens 56(9):5443–5457

    Article  Google Scholar 

  18. Zhang H, Ma J (2021) Gtp-pnet: a residual learning network based on gradient transformation prior for pansharpening. ISPRS J Photogrammetry Remote Sens 172:223–239

    Article  Google Scholar 

  19. Ballester C, Caselles V, Igual L, Verdera J, Rougé B (2006) A variational model for p+ xs image fusion. Int J Comput Vision 69(1):43–58

    Article  Google Scholar 

  20. Fasbender D, Radoux J, Bogaert P (2008) Bayesian data fusion for adaptable image pansharpening. IEEE Trans Geosci Remote Sens 46(6):1847–1857

    Article  Google Scholar 

  21. Palsson F, Sveinsson JR, Ulfarsson MO (2013) A new pansharpening algorithm based on total variation. IEEE Geosci Remote Sens Lett 11(1):318–322

    Article  Google Scholar 

  22. Liu P (2019) A new total generalized variation induced spatial difference prior model for variational pansharpening. Remote Sens Lett 10(7):659–668

    Article  Google Scholar 

  23. Tian X, Chen Y, Yang C, Gao X, Ma J (2020) A variational pansharpening method based on gradient sparse representation. IEEE Signal Process Lett 27:1180–1184

    Article  Google Scholar 

  24. Li S, Yin H, Fang L (2013) Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Trans Geosci Remote Sens 51(9):4779–4789

    Article  Google Scholar 

  25. Molina R, Vega M, Mateos J, Katsaggelos AK (2008) Variational posterior distribution approximation in bayesian super resolution reconstruction of multispectral images. Appl Comput Harmonic Anal 24(2):251–267

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang S, Chen X, Dai W, Selesnick IW, Cai G, Cowen B (2018) Vector minimax concave penalty for sparse representation. Digital Signal Process 83:165–179

    Article  MathSciNet  Google Scholar 

  27. Jiao Y, Jin Q, Lu X, Wang W (2016) Alternating direction method of multipliers for linear inverse problems. SIAM J Numer Anal 54(4):2114–2137

    Article  MathSciNet  MATH  Google Scholar 

  28. Gogineni R, Chaturvedi A, BS DS, (2021) A variational pan-sharpening algorithm to enhance the spectral and spatial details. Int J Image Data Fusion 12(3):242–264

    Google Scholar 

  29. Wald L, Ranchin T, Mangolini M (1997) Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogram Eng Remote Sens 63(6):691–699

    Google Scholar 

  30. Alparone L, Aiazzi B, Baronti S, Garzelli A, Nencini F, Selva M (2008) Multispectral and panchromatic data fusion assessment without reference. Photogram Eng Remote Sens 74(2):193–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Gogineni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gogineni, R., Ramakrishna, Y., Veeraswamy, P., Chaitanya, J. (2023). Pansharpening of Multispectral Images Through the Inverse Problem Model with Non-convex Sparse Regularization. In: Sharma, S., Subudhi, B., Sahu, U.K. (eds) Intelligent Control, Robotics, and Industrial Automation. RCAAI 2022. Lecture Notes in Electrical Engineering, vol 1066. Springer, Singapore. https://doi.org/10.1007/978-981-99-4634-1_40

Download citation

Publish with us

Policies and ethics