Skip to main content

Abstract

Streptococcus pneumoniae usually inhabits the nasopharyngeal cavity of normal people, most of which are not pathogenic, and only a few are virulent. If the body’s resistance decreases, it can often invade lung tissue and cause pneumonia. In addition, septicemia, sinusitis, otitis media and purulent meningitis may also occur in this case. Streptococcal pneumonia, formerly called lobar pneumonia (accounting for about 90% of out-of-hospital-acquired pneumonia), features typical symptoms such as sudden chills, high fever, cough, rust-colored sputum and chest pain. Streptococcus pneumoniae is a common pathogen of pneumonia, and it is also the most common pathogen among hospitalized patients with pneumonia. Young and middle-aged men are prone to Streptococcus pneumoniae, which occurs frequently in winter and spring. There are usually inducements such as getting caught in the rain, catching a cold, fatigue and drunkenness, and most of the patients have prodromal symptoms of upper respiratory tract infection. However, in recent 20 or 30 years, the resistance of Streptococcus pneumoniae to antibiotics has been increasing, causing some difficulties to clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chiang WC, Teoh OH, Chong CY, et al. Epidemiology, clinical characteristics and antimicrobial resistance patterns of community-acquired pneumonia in 1702 hospitalized children in Singapore. Respirology. 2007;12(2):254–61.

    Article  PubMed  Google Scholar 

  2. Nambu A, Ozawa K, Kobayashi N, et al. Imaging of community-acquired pneumonia: roles of imaging examinations, imaging diagnosis of specific pathogens and discrimination from noninfectious diseases. World J Radiol. 2014;6(10):779–93.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Guo M, Wang Y, Guo L. CT for identification and diagnosis of Mycoplasma pneumoniae pneumonia and Streptococcus spp infection in children. Chin J Nosocomiol. 2015;25(2):443–5.

    Google Scholar 

  4. Zuo J, Wang H. CT differential diagnosis of mycoplasma pneumoniae pneumonia and streptococcal pneumonia in children. M M I Bimonthly. 2018;27(8):2765–6.

    Google Scholar 

  5. Li Q, Yang Y. Progress in prevention and treatment of Streptococcus pneumoniae infection in children. Clin Med J. 2013;11(1):27–31.

    CAS  Google Scholar 

  6. Nambu A, Saito A, Araki T, et al. Chlamydia pneumoniae: comparison with findings of Mycoplasma pneumoniae and Streptococcus pneumoniae at thin-section CT. Radiology. 2006;238(1):330.

    Article  PubMed  Google Scholar 

  7. Fraser RS, Colman N, Müller NL, et al. Synopsis of diseases of the chest. Philadelphia: Elsevier Saunder; 2005.

    Google Scholar 

  8. Hershey CO, Panaro V. Round pneumonia in adults. Arch Intern Med. 1988;148(5):1155.

    Article  CAS  PubMed  Google Scholar 

  9. Donnelly LF, Klosterman LA. The yield of CT of children who have complicated pneumonia and noncontributory chest radiography. AJR Am J Roentgenol. 1998;170(6):1627–331.

    Article  CAS  PubMed  Google Scholar 

  10. Hodina M, Hanquinet S, Cotting J, et al. Imaging of cavitary necrosis in complicated childhood pneumonia. Eur Radiol. 2002;12:391–6.

    Article  CAS  PubMed  Google Scholar 

  11. Sun D. Analysis of clinical and imaging manifestations of 16 cases of Staphylococcal pneumonia. Chin Mod Med. 2009;16(23):90–1.

    Google Scholar 

  12. Ye N, Tian X. The study on X-ray findings and clinical presentations of Staphylococcal pneumonia (analysis of 23 cases). J Tianjin Med Uni. 1999;3:44–5.

    Google Scholar 

  13. Lin S, Pei H. X-ray and CT findings of 15 cases of Staphylococcal pneumonia. Intern Med Chin. 2014;9(5):568–9.

    Google Scholar 

  14. Xian X, Lin Y, Jing W. Blood-borne Staphylococcus aureus pneumonia imaging analysis. J Imag Res Med Appl. 2018;2(12):33–4.

    Google Scholar 

  15. Dou Y, Kui H, Lan K, et al. Analysis of clinical characteristics of AIDS complicated with bacterial pneumonia. Elec J Emerg Infect Dis. 2019;4(1):20–3.

    Google Scholar 

  16. Huang RM, Naidich DP, Lubat E, et al. Septic pulmonary emboli: CT-radiographic correlation. Am J Roentgenl. 1989;153(1):41–5.

    Article  CAS  Google Scholar 

  17. Song T, Li HL, Li X, et al. Clinical features and CT findings of staphylococcus aureus pneumonia secondary to to malignant tumor. J Clin Radiol. 2011;30(12):1765–7.

    Google Scholar 

  18. Gur M, Spinelli E, Tridello G, et al. Chest computed tomography scores in patients with cystic fibrosis colonized with methicillin-resistant Staphylococcus aureus (MRSA). Clin Respir J. 2016;12(2):779–85.

    Article  Google Scholar 

  19. Wang G, Zhao G, Chao X, et al. The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int J Environ Res Public Health. 2020;17(17):6278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Lyu Y, Zheng B, et al. Antimicrobial susceptibility of gram-negative organisms: results from China antimicrobial resistance surveillance trial (CARST) program, 2015–2016. Chin J Clin Pharmacol. 2017;33(23):2521–42.

    Google Scholar 

  21. Chung DR, Song JH, Kim SH, et al. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med. 2011;184(12):1409–17.

    Article  PubMed  Google Scholar 

  22. Yao H, Qin SS, Chen S, et al. Emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Lancet Infect Dis. 2018;18(1):25.

    Article  PubMed  Google Scholar 

  23. Candan ED, Aksöz N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochim Pol. 2015;62(4):867–74.

    Article  CAS  PubMed  Google Scholar 

  24. Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae-clinical and molecular perspectives. J Intern Med. 2020;287(3):283–300.

    Article  CAS  PubMed  Google Scholar 

  25. Korvick AJ, Hackett AK, Yu LV, et al. Klebsiella pneumonia in the modern era: clinicoradiographic correlations. South Med J. 1991;84(2):200–4.

    Article  CAS  PubMed  Google Scholar 

  26. Moon WK, Im JG, Yeon KM, et al. Complication of Klebsiella pneumonia: CT evaluation. J Comput Assist Tomogr. 1995;19(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  27. Tsukadaira A, Okubo Y, Kogayashi T, et al. Four cases of Klebsiella pneumonia. Nihon Kyoubu Gakkai Zasshi. 2002;40(6):530–5.

    Google Scholar 

  28. Okada F, Ando Y, Honda K, et al. Clinical and pulmonary thin-section CT findings in acute Klebsiella Pneumoniae pneumonia. Eur Radiol. 2009;19(4):809–15.

    Article  PubMed  Google Scholar 

  29. Mao Y, Zhu J, Li Y. Clinical and CT features of multi-drug resistant Klebsiella pneumoniae pulmonary infection. Elec J Emerg Infect Dis. 2018;3(4):206–9.

    Google Scholar 

  30. Okada F, Ando Y, Honda K, et al. Acute Klebsiella pneumoniae pneumonia alone and with concurrent infection: comparison of clinical and thin-section CT findings. Br J Radiol. 2010;83(994):854–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ejlertsen T, Thisted E, Ebbesen F, et al. Branhamella catarrhalis in children and adults. A study of prevalence, time of colonisation, and association with upper and lower respiratory tract infections. J Infect. 1994;29(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  32. Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol. 2012;7(9):1073–100.

    Article  CAS  PubMed  Google Scholar 

  33. Cheepsattayakorn A, Tharavichitakul P, Dettrairat S, et al. Moraxella catarrhalis pneumonia in an AIDS patient: a case report. J Med Assoc Thai. 2009;92(2):284–9.

    PubMed  Google Scholar 

  34. Al-Anazi K, Al-Fraih F, Chaudhri N, et al. Pneumonia caused by Moraxella catarrhalis in haematopoietic stem cell transplant patients. Report of two cases and review of the literature. Libyan J Med. 2007;2(3):144–7.

    PubMed  PubMed Central  Google Scholar 

  35. Okada F, Ando Y, Nakayama T, et al. Pulmonary thin-section CT findings in acute Moraxella catarrhalis pulmonary infection. Br J Radiol. 2011;84(1008):1109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Grady KAF, Grimwood K, Sloots TP, et al. Upper airway viruses and bacteria and clinical outcomes in children with cough. Pediatr Pulmonol. 2017;52(3):373–81.

    Article  PubMed  Google Scholar 

  37. Wang P, Xie C, Wu Y. Antimicrobial resistance and BRO genotyping of Moraxella catarrhalis isolates from respiratory tract in children. J Clin Pediatr. 2013;31(8):719–22.

    CAS  Google Scholar 

  38. Chen Q, Zhang J. Epidemiological characteristics and drug resistance analysis of H. influenzae in respiratory tract infections. Chin J Health Lab Technol. 2019;29(2):186–9.

    Google Scholar 

  39. Okada F, Ando Y, Tanoue S, et al. Radiological findings in acute Haemophilus influenzae pulmonary infection. Br J Radiol. 2012;85(1010):121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trollfors B, Claesson B, Lagergård T, et al. Incidence, predisposing factors and manifestations of invasive Haemophilus influenzae infections in adults. Eur J Clin Microbiol. 1984;3(3):180–4.

    Article  CAS  PubMed  Google Scholar 

  41. Wang H. Diagnosis of Haemophilus influenzae pneumonia. World Health Digest. 2011;8(25):174–5.

    Google Scholar 

  42. Kofteridis D, Samonis G, Mantadakis E, et al. Lower respiratory tract infections caused by Haemophilus influenzae: clinical features and predictors of outcome. Med Sci Monit. 2009;15(4):CR135–9.

    PubMed  Google Scholar 

  43. Nei T, Yamano Y, Sakai F, et al. Mycoplasma pneumoniae pneumonia: differential diagnosis by computerized tomography. Intern Med. 2007;46(14):1083–7.

    Article  PubMed  Google Scholar 

  44. Tufvesson E, Markstad H, Bozovic G, et al. Inflammation and chronic colonization of Haemophilus influenzae in sputum in COPD patients related to the degree of emphysema and bronchiectasis in high-resolution computed tomography. Int J Chron Obstruct Pulmon Dis. 2017;12:3211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie C, Guiluan M, Jialu Q, et al. Clinical features and risk factors for infections of multidrug resistant Pseudomonas aeruginosa. Chin J Nosocomiol. 2018;28(11):1617–20.

    Google Scholar 

  46. Zou H. Clinical characteristics and drug resistance analysis of 117 strains of Pseudomonas aeruginosa infection. Chin Pract Med. 2018;13(16):192–4.

    Google Scholar 

  47. Zhao Z, Qiu T, Liang Z, et al. Clinical characteristics and risk factors for mortality of hospital-acquired Pseudomonas aeruginosa bloodstream infections. Acad J Chin PLA Med Sch. 2016;37(4):324–7.

    CAS  Google Scholar 

  48. Chen M, Zhao H, Chen C. Clinical investigation of hospital acquired pneumonia caused by pseudomonas aeruginosa. Chin J Nosocomiol. 2011;21(3):454–6.

    CAS  Google Scholar 

  49. Petrocheilou A, Papagrigoriou-Theodoridou M, Michos A, et al. Early-life Pseudomonas aeruginosa infection in cystic fibrosis and lung disease progression. Glob Pediatr Health. 2017;4:2333794X17738465.

    PubMed  PubMed Central  Google Scholar 

  50. Vazirani J, Wurity S, Ali MH. Multidrug-resistant Pseudomonas aeruginosa keratitis: risk factors, clinical characteristics, and outcomes. Ophthalmology. 2015;122(10):2110–4.

    Article  PubMed  Google Scholar 

  51. Wang L, Xu X, Shi J, et al. Research progress of multidrug-resistant Pseudomonas aeruginosa. Int J Lab Med. 2013;34(13):1713–5.

    CAS  Google Scholar 

  52. Gao W, Xiao Y, Shi B, et al. Pseudomonas aeruginosa community-acquired pneumonia: two cases report and literature review. Int J Respir. 2014;34(6):413–8.

    Google Scholar 

  53. Han D, He W. Imaging evaluation of hospital acquired pneumonia. Chin Comput Med Imag. 2010;16(5):375–8.

    Google Scholar 

  54. Zhang R, Huang X, Li M, et al. A case of fatal community-acquired Pseudomonas aeruginosa pneumonia. Chin J Tubercul Respir Dis. 2019;42(12):950–2.

    Google Scholar 

  55. Takajo D, Iwaya K, Katsurada Y, et al. Community-acquired lobar pneumonia caused by Pseudomonas aeruginosa infection in Japan: a case report with histological and immunohistochemical examination. Pathol Int. 2014;64(5):224–30.

    Article  PubMed  Google Scholar 

  56. Salciccioli JD, Woodcock H, Darmalingam M. Pseudomonas aeruginosa as an unusual cause of cavitating lung lesion. BMJ Case Rep. 2017;2017:bcr2017220527.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cunha BA, Burillo A, Bouza E. Legionnaires’ disease. Lancet. 2016;387(10016):376–85.

    Article  PubMed  Google Scholar 

  58. Bartram J, Chartier Y, Lee J, et al. Legionella and the prevention of legionellosis. Geneva: World Health Organization; 2007.

    Google Scholar 

  59. Fraser DW. Legionellosis: evidence of airborne transmission. Ann N Y Acad Sci. 1980;353:61–6.

    Article  CAS  PubMed  Google Scholar 

  60. Atlas RM. Legionella: from environmental habitats to disease pathology, detection and control. Environ Microbiol. 1999;1(4):283–93.

    Article  CAS  PubMed  Google Scholar 

  61. Mittal S, Singh AP, Gold M, et al. Thoracic imaging features of Legionnaire’s disease. Infect Dis Clin N Am. 2017;31(1):43–54.

    Article  Google Scholar 

  62. Jarraud S, Descours G, Ginevra C, et al. Identification of legionella in clinical samples. Methods Mol Biol. 2013;954:27–56.

    Article  CAS  PubMed  Google Scholar 

  63. Olsen CW, Elverdal P, Jørgensen CS, et al. Comparison of the sensitivity of the Legionella urinary antigen EIA kits from Binax and Biotest with urine from patients with infections caused by less common serogroups and subgroups of Legionella. Eur J Clin Microbiol Infect Dis. 2009;28(7):817–20.

    Article  CAS  PubMed  Google Scholar 

  64. Newton HJ, Ang DKY, van Driel IR, et al. Molecular pathogenesisof infections caused by Legionella pneumophila. Clin Microbiol Rev. 2010;23(2):274–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Coletta FS, Fein AM. Radiological manifestations of Legionella/Legionella-like organisms. Semin Respir Infect. 1998;13(2):109–15.

    CAS  PubMed  Google Scholar 

  66. Tan MJ, Tan JS, Hamor RH, et al. The radiological manifestations of Legionnaire’s disease. Chest. 2000;117(2):398–403.

    Article  CAS  PubMed  Google Scholar 

  67. Yu H, Higa F, Hibiya K, et al. Computed tomographic features of 23 sporadic cases with Legionella pneumophila pneumonia. Eur J Radiol. 2010;74(3):e73–8.

    Article  PubMed  Google Scholar 

  68. Lanternier F, Tubach F, Ravaud P, et al. Incidence and risk factors of Legionella pneumophila pneumonia during anti-tumor necrosis factor therapy: a prospective French study. Chest. 2013;144(3):990–8.

    Article  PubMed  Google Scholar 

  69. Sarkai F, Tokuda H, Goto H, et al. Computed tomographic features of Legionella pneumophila pneumonia in 38 cases. J Comput Assist Tomogr. 2007;31(1):125–31.

    Article  Google Scholar 

  70. Lei Z, Feng K, Jia W, et al. Imaging appearances and its diagnostic value of Legionella pneumonia. Chin J Med Imaging Technol. 2006;22(11):1668–71.

    Google Scholar 

  71. Godet C, Frat JP, Moal GL, et al. Legionnaire’s pneumonia: is there really an interstitial disease? Eur J Radiol. 2007;61(1):150–3.

    Article  CAS  PubMed  Google Scholar 

  72. Dietrich PA, Johnson RD, Fairbanks JT, et al. The chest radiograph in Legionnaire’s disease. Radiology. 1978;127(3):577–82.

    Article  CAS  PubMed  Google Scholar 

  73. Jonkers RE, Lettinga KD, Pels Rijcken TH, et al. Abnormal radiological findings and a decreased carbon monoxide transfer factor can persist long after the acute phase of Legionella pneumophila pneumonia. Clin Infect Dis. 2004;38(5):605–11.

    Article  CAS  PubMed  Google Scholar 

  74. Liang S, Chen Y. Research advances on regulation mechanism of lung injury caused by Legionella infection. Int J Respir. 2021;41(3):229–35.

    Google Scholar 

  75. Kim SR, Jung LY, Oh IJ, et al. Pulmonary actinomycosis during the first decade of 21st century: cases of 94 patients. BMC Infect Dis. 2013;13:216.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tristan F, Florent V, Judith K, et al. Actinomycosis: etiology, clinical features, diagnosis, treatment, and management. Infect Drug Resist. 2014;7:183–97.

    Google Scholar 

  77. Farrokh D, Rezaitalab F, Bakhshoudeh B. Pulmonary actinomycosis with endobronchial involvement: a case report and literature review. Tanaffos. 2014;13(1):52–6.

    PubMed  PubMed Central  Google Scholar 

  78. Cheon JE, Im JG, Kim MY, et al. Thoracic actinomycosis: CT findings. Radiology. 1998;209(1):229–33.

    Article  CAS  PubMed  Google Scholar 

  79. Baik JJ, Lee GL, Yoo GL, et al. Pulmonary actinomycosis in Korea. Respirology. 1999;4(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang M, Zhang XY, Chen YB. Primary pulmonary actinomycosis: a retrospective analysis of 145 cases in mainland China. Int J Tuberc Lung Dis. 2017;21(7):825–31.

    Article  CAS  PubMed  Google Scholar 

  81. Kim TS, Han J, Koh WJ, et al. Thoracic actinomycosis: CT features with histopathologic correlation. Am J Roentgenol. 2006;186(1):225–31.

    Article  Google Scholar 

  82. Heo SH, Shin SS, Kim JW, et al. Imaging of actinomycosis in various organs: a comprehensive review. Radiographics. 2014;34(1):19–33.

    Article  PubMed  Google Scholar 

  83. Mabeza GF, Macfarlane J. Pulmonary actinomycosis. Eur Respir J. 2003;21(3):545–51.

    Article  CAS  PubMed  Google Scholar 

  84. Han JY, Lee KN, Lee JK, et al. An overview of thoracic actinomycosis: CT features. Insights Imaging. 2013;4(2):245–52.

    Article  PubMed  Google Scholar 

  85. Zhang J, He Y, Yang R. CT imaging observation and literature review of 7 cases of pulmonary actinomycosis. J Clin Radiol. 2016;35(11):1680–3.

    Google Scholar 

  86. Chai X, Yang X. CT findings of pulmonary actinomycosis and causes of misdiagnosis. Chin J Radiol. 2013;47(6):509–12.

    Google Scholar 

  87. Qin J, Meng XC, Fang Y, et al. Computed tomography and clinical features of invasive pulmonary aspergillosis in liver transplant recipients. J Thorac Imaging. 2012;27(2):107–12.

    Article  PubMed  Google Scholar 

  88. Tsujimoto N, Saraya T, Kikuchi K, et al. High-resolution CT findings of patients with pulmonary nocardiosis. J Thorac Dis. 2012;4(6):577–82.

    PubMed  PubMed Central  Google Scholar 

  89. Wang HK, Sheng WH, Hung CC, et al. Clinical characteristics, microbiology, and outcomes for patients with lung and disseminated nocardiosis in a tertiary hospital. J Formos Med Assoc. 2015;114(8):742–9.

    Article  PubMed  Google Scholar 

  90. Sato H, Okada F, Mori T, et al. High-resolution computed tomography findings in patients with pulmonary nocardiosis. Acad Radiol. 2016;23(3):290–6.

    Article  PubMed  Google Scholar 

  91. Bahtouee M, Saberifard J, Nabipour I, et al. Combined computed tomography (CT)/scintigraphy strategy may help in diagnostic dilemmas in interstitial lung disease (ILD). Quant Imaging Med Surg. 2016;6(4):460–1.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dennie C, Thornhill R, Sethi-Virmani V, et al. Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant Imaging Med Surg. 2016;6(1):6–15.

    PubMed  PubMed Central  Google Scholar 

  93. Coussement J, Lebeaux D, El Bizri N, et al. Nocardia polymerase chain reaction (PCR)-based assay performed on bronchoalveolar lavage fluid after lung transplantation: a prospective pilot study. PLoS One. 2019;14(2):e0211989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vetor R, Murray CK, Mende K, et al. The use of PCR/electrospray ionization-time-of-flight-mass spectrometry (PCR/ESI-TOF-MS) to detect bacterial and fungal colonization in healthy military service members. BMC Infect Dis. 2016;16:338.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ekrami A, Khosravi AD, Samarbaf Zadeh AR, et al. Nocardia co-infection in patients with pulmonary tuberculosis. Jundishapur J Microbiol. 2014;7(12):e12495.

    PubMed  PubMed Central  Google Scholar 

  96. Rouzaud C, Rodriguez-Nava V, Catherinot E, et al. Clinical assessment of a Nocardia spp. polymerase chain reaction (PCR)-based assay for the diagnosis of nocardiosis. J Clin Microbiol. 2018;56(6):e00002–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y. et al. (2023). Bacterial Infection. In: Li, H., Liu, J., Li, L. (eds) Radiology of Infectious and Inflammatory Diseases - Volume 3. Springer, Singapore. https://doi.org/10.1007/978-981-99-4614-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4614-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4613-6

  • Online ISBN: 978-981-99-4614-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics