Skip to main content

Noninvasive Peripheral Nerve and Spinal Cord Stimulation

  • Chapter
  • First Online:
Therapeutics of Neural Stimulation for Neurological Disorders
  • 339 Accesses

Abstract

This chapter gives a comprehensive overview of noninvasive peripheral nerve stimulation including transcutaneous cervical vagus nerve stimulation (tcVNS), transcutaneous auricular vagus nerve stimulation (taVNS) and external trigeminal nerve stimulation (eTNS), and transcutaneous spinal direct current stimulation (tsDCS). TcVNS, using the gammaCore device, has received FDA approval for the acute treatment of cluster headaches. Clinical studies have shown its efficacy in reducing pain frequency and severity in cluster headaches and migraines. Animal experiments have demonstrated the stimulatory effects of tcVNS on the vagus nerve and its related structures. Studies have also explored the use of tcVNS for ischemic stroke. TaVNS, targeting the auricular branch of the vagus nerve, has demonstrated antiepileptic effects in patients with refractory epilepsy and shows potential in pediatric epilepsy management. This technique has also been investigated for its therapeutic effects on depression. ETNS, which stimulates the trigeminal nerve, has shown promise in the treatment of refractory epilepsy and depression, with clinical studies reporting reductions in seizure frequency and improvements in quality of life. The safety and tolerability of these noninvasive peripheral nerve stimulation techniques have been prove to be generally good, with common adverse reactions such as facial skin irritation. These approaches offer alternative treatment options for conditions such as epilepsy, pain, and depression. TsDCS, which applies electrical stimulation to the spinal cord through surface electrodes, has shown promise in the treatment of various conditions, including spasticity, stroke, spinal cord injury, and restless legs syndrome. Studies have shown positive therapeutic effects on spasticity, walking ability in stroke patients, and post-stroke aphasia. Safety considerations indicate that tsDCS is generally well-tolerated, with minimal adverse effects observed. Overall, tsDCS holds promise as a nonpharmacological treatment option, but additional studies are required to better understand its mechanisms and refine its clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ay I, Sorensen AG, Ay H (2011) Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: an unlikely role for cerebral blood flow. Brain Res 1392:110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ay I, Nasser R, Simon B et al (2016) Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats. Brain Stimul 9(2):166–173

    Article  PubMed  Google Scholar 

  • Bocci T, Ardolino G, Nigro M et al (2019) Spinal direct current stimulation (tsDCS) in hereditary spastic paraplegias (HSP): a sham-controlled crossover study. Clin Neurophysiol 130(1):e17

    Google Scholar 

  • Busch V, Zeman F, Heckel A et al (2013) The effect of transcutaneous vagus nerve stimulation on pain perception—an experimental study. Brain Stimul 6(2):202–209

    Article  PubMed  Google Scholar 

  • Chen SP, Ay I, Lopes de Morais A et al (2016) Vagus nerve stimulation inhibits cortical spreading depression. Pain 157(4):797–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Cogiamanian F, Vergari M, Pulecchi F et al (2008) Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol 119:2636–2640

    Article  PubMed  Google Scholar 

  • DeGiorgio CM, Shewmon DA, Whitehurst T (2003) Trigeminal nerve stimulation for epilepsy. Neurology 61(3):421–422

    Article  PubMed  Google Scholar 

  • DeGiorgio CM, Shewmon A, Murray D et al (2006) Pilot study of trigeminal nerve stimulation (TNS) for epilepsy: a proof-of-concept trial. Epilepsia 47(7):1213–1215

    Article  PubMed  Google Scholar 

  • DeGiorgio CM, Murray D, Markovic D et al (2009) Trigeminal nerve stimulation for epilepsy: long-term feasibility and efficacy. Neurology 72(10):936–938

    Article  PubMed  Google Scholar 

  • DeGiorgio CM, Soss J, Cook IA et al (2013) Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology 80(9):786–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Rong P, Hong Y et al (2016) Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry 79(4):266–273

    Article  PubMed  Google Scholar 

  • Frangos E, Ellrich J, Komisaruk BR (2015) Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul 8(3):624–636

    Article  PubMed  Google Scholar 

  • Gil-López F, Boget T, Manzanares I et al (2020) External trigeminal nerve stimulation for drug resistant epilepsy: a randomized controlled trial. Brain Stimul 13(5):1245–1253

    Article  PubMed  Google Scholar 

  • He W, Jing X, Wang X et al (2013) Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav 28(3):343–346

    Article  PubMed  Google Scholar 

  • Heide AC, Winkler T, Helms HJ, Nitsche MA et al (2014) Effects of transcutaneous spinal direct current stimulation in idiopathic restless legs patients. Brain Stimul 7(5):636–642

    Article  CAS  PubMed  Google Scholar 

  • Hein E, Nowak M, Kiess O et al (2013) Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm (Vienna) 120(5):821–827

    Article  PubMed  Google Scholar 

  • Hubli M, Dietz V, Schrafl-Altermatt M, Bolliger M (2013) Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clin Neurophysiol 124(6):1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Johnson MI, Hajela VK, Ashton CH et al (1991) The effects of auricular transcutaneous electrical nerve stimulation (TENS) on experimental pain threshold and autonomic function in healthy subjects. Pain 46(3):337–342

    Article  CAS  PubMed  Google Scholar 

  • Laqua R, Leutzow B, Wendt M et al (2014) Transcutaneous vagal nerve stimulation may elicit anti- and pro-nociceptive effects under experimentally-induced pain—a crossover placebo-controlled investigation. Auton Neurosci 185:120–122

    Article  PubMed  Google Scholar 

  • Lehtimäki J, Hyvärinen P, Ylikoski M et al (2013) Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Otolaryngol 133(4):378–382

    Article  PubMed  Google Scholar 

  • Lim CY, Shin HI (2011) Noninvasive DC stimulation on neck changes MEP. Neuroreport 22:819–823

    Article  PubMed  Google Scholar 

  • Liu A, Rong P, Gong L et al (2018) Efficacy and safety of treatment with transcutaneous Vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life. Med Sci Monit 24:8439–8448

    Article  PubMed  PubMed Central  Google Scholar 

  • Marangolo P, Fiori V, Shofany J, Gili T, Caltagirone C, Cucuzza G et al (2017) Moving beyond the brain: transcutaneous spinal direct current stimulation in post-stroke aphasia. Front Neurol 8:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonis R, D’Ostilio K, Schoenen J et al (2017) Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: an electrophysiological study in healthy volunteers. Cephalalgia 37(13):1285–1293

    Article  PubMed  PubMed Central  Google Scholar 

  • Picelli A, Chemello E, Castellazzi P et al (2015) Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: a pilot, double blind, randomized controlled trial. Restor Neurol Neuros 33(3):357–368

    Google Scholar 

  • Polak T, Markulin F, Ehlis AC et al (2009) Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters. J Neural Transm (Vienna) 116(10):1237–1242

    Article  PubMed  Google Scholar 

  • Priori A, Ciocca M, Parazzini M et al (2014) Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol 592(16):3345–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader LM, Cook IA, Miller PR et al (2011) Trigeminal nerve stimulation in major depressive disorder: first proof of concept in an open pilot trial. Epilepsy Behav 22(3):475–478

    Article  PubMed  Google Scholar 

  • Shiozawa P, Duailibi MS, da Silva ME et al (2014) Trigeminal nerve stimulation (TNS) protocol for treating major depression: an open-label proof-of-concept trial. Epilepsy Behav 39:6–9

    Article  PubMed  Google Scholar 

  • Soss J, Heck C, Murray D et al (2015) A prospective long-term study of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy Behav 42:44–47

    Article  PubMed  Google Scholar 

  • Stefan H, Kreiselmeyer G, Kerling F et al (2012) Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53(7):e115–e118

    Article  PubMed  Google Scholar 

  • Straube A, Ellrich J, Eren O et al (2015) Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain 16:543

    Article  PubMed  Google Scholar 

  • Truini A, Vergari M, Biasiotta A, La Cesa S, Gabriele M, Di Stefano G, Cambieri C, Cruccu G, Inghilleri M, Priori A (2011) Transcutaneous spinal direct current stimulation inhibits nociceptive spinal pathway conduction and increases pain tolerance in humans. Eur J Pain 15:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Usami K, Kawai K, Sonoo M et al (2013) Scalp-recorded evoked potentials as a marker for afferent nerve impulse in clinical vagus nerve stimulation. Brain Stimul 6(4):615–623

    Article  PubMed  Google Scholar 

  • Wang L, Liu C, Hou Y et al (2020) Altered cortical gray matter volume and functional connectivity after transcutaneous spinal cord direct current stimulation in idiopathic restless legs syndrome. Sleep Med 74:254–261

    Article  PubMed  Google Scholar 

  • Winkler T, Hering P, Straube A (2010) Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol 121:957–961

    Article  CAS  PubMed  Google Scholar 

  • Zare M, Salehi M, Mahvari J et al (2014) Trigeminal nerve stimulation: a new way of treatment of refractory seizures. Adv Biomed Res 3:81

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Z., Yang, Y. (2023). Noninvasive Peripheral Nerve and Spinal Cord Stimulation. In: Wang, Y. (eds) Therapeutics of Neural Stimulation for Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-99-4538-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4538-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4537-5

  • Online ISBN: 978-981-99-4538-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics